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Abstract— With the development of society, technological
progress, and new needs, autonomous driving has become a
trendy topic in smart cities. Due to technological limitations,
autonomous driving is used mainly in limited and low-speed
scenarios such as logistics and distribution, shared transport,
unmanned retail, and other systems. On the other hand, the
natural driving environment is complicated and unpredictable.
As a result, to achieve all-weather and robust autonomous
driving, the vehicle must precisely understand its environment.
The self-driving cars are outfitted with a plethora of sensors
to detect their environment. In order to provide researchers
with a better understanding of the technical solutions for multi-
sensor fusion, this paper provides a comprehensive review of
multi-sensor fusion 3D object detection networks according to the
fusion location, focusing on the most popular LiDAR and cameras
currently in use. Furthermore, we describe the popular datasets
and assessment metrics used for 3D object detection, as well
as the problems and future prospects of 3D object detection in
autonomous driving.

Index Terms— Autonomous driving, smart cities, multi-sensor
fusion, 3D object detection, LiDAR.

I. INTRODUCTION

TRAFFIC congestion is a substantial hindrance to eco-
nomic progress, with serious consequences for the

social and economic sectors, as well as impediments to the
advancement of society and sustainable cities. Significant
breakthroughs in autonomous driving could bring about sig-
nificant changes in human life, such as reducing the carbon
emissions produced by transportation, reducing the amount
of time spent commuting, improving transportation efficiency,
and contributing to the development of smart cities [1].

As a result, auto manufacturers have continued to intro-
duce vehicles with assisted driving features, which suggests
that the field of autonomous driving is currently seeing
rapid growth. Currently, most car companies can achieve
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L2 level autonomous driving, and a few can achieve L3 level
autonomous driving

The identification of objects in two dimensions has seen
important advances recently. Nevertheless, because 2D object
detection can only provide confidence scores for 2D edges and
categories of things, it cannot provide the distance information
required for autonomous vehicles.

In a driving environment, self-driving cars must detect not
only the distance to an object’s category, but also the rotation
angle and even the object’s speed [2]. Autonomous vehicles
must therefore have 3D object detection systems. At the top
and bottom of the autonomous driving system are 3D object
detection algorithms responsible for processing sensor inputs
so that the autonomous car can “see” its surroundings. On the
other hand, it will predict the surrounding environment based
on what it observes and establish the subsequent driving
trajectory to guide the vehicle’s control system to do actions
such as acceleration, braking, and steering.

The development of 3D object detection algorithms has
produced numerous subfields. 3D object identification meth-
ods are commonly divided into two groups: a single-sensor
approach and a multi-sensor fusion technique, also known
as LiDAR-camera, radar-camera, LiDAR-radar-camera. The
first method, “using only one sensor for 3D object recogni-
tion,” refers to the practice, as its name suggests. The latter
term refers to using two or more sensors working together
to improve their ability to detect three-dimensional objects.
Common single-modal 3D object detection algorithms are
presented in Section II-B.

Detection of 3D objects has its own set of challenges.
Single-sensor approaches are frequently restricted by a lack
of depth information or excessive similarity of object charac-
teristics; for instance, the radar point clouds characteristics of
utility poles and individuals are remarkably similar. Methods
employing simply LiDAR as a sensing device are incapable
of distinguishing between them.

Despite the fact that numerous types of 3D object detection
methods have been carefully summarized and compared in
previous works [2], [3], [4], [5], there are relatively few
review works that compare the algorithms at the level of
experimental results visualization. In this study, we focus on
multi-sensor fusion for 3D object detection and reproduce
some representative methods to help the readers understand
3D object detection in a visual format and evaluate the perfor-
mance of 3D object detection algorithms in real-world driving
scenarios.
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Fig. 1. Hierarchically-structured taxonomy of multi-sensor fusion 3D object detection for autonomous driving.

The contributions of this paper are as follows:
• We overview and briefly describe the most common 3D

object detection datasets currently used in autonomous
driving scenarios.

• We describe the most prominent 3D object detection
techniques based on LiDAR-camera fusion and provide
an in-depth discussion centered on the fusion position.

• We illustrate the performance of 3D object detection in
a variety of settings through the depiction of the results
of multiple approaches.

• We examine the challenges and future trends of 3D
object identification in autonomous driving, as well as
the prognosis of the impact that autonomous driving will
have on the future world, with the aim that this will better
stimulate future research.

The following is a brief description of the remainder of
this paper. We present in Section II the data representation
of sensors commonly used for autonomous driving and their
representative detection networks. In Section III, we summa-
rize the current datasets used for autonomous driving scenarios
and make a brief comparison. In Section IV, we detail
3D object detection based on multi-sensor fusion. We first
start with sensor devices and analyze the existing popular
sensor combinations. Then, multi-sensor fusion 3D object

detection is divided into two categories based on the fusion
position, followed by a detailed description of the two types
of schemes. In Section V, we compare popular 3D object
detection schemes of recent years and present the visualization
results. Finally, we conclude with a summary of the current
challenges and an outlook for the future. The structure diagram
of the article is shown in Figure 1.

II. BACKGROUND AND RELATED WORKS

A. What Is 3D Object Detection?

The goal of 3D object detection is to generate accurate
attribute predictions for real-world objects, such as their size,
rotation angle, and other relevant characteristics. When used
for autonomous driving, 3D object detection also frequently
makes predictions regarding the velocity of the objects being
detected. Currently, the most common applications for 3D
object detection are those associated with autonomous driving,
as well as 3D object detection methods for usage in interior
scenarios [6], [7]. In comparison to interior contexts, driving
sceneries are dynamic, complicated, and highly changing; they
are also quite demanding in terms of forecast speed. As shown
in 2a, in 3D object identification methods, a rectangle is
typically utilized to enclose the 3D object, and this rectangle
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Fig. 2. Example of 3D object detection results.

is typically represented as follows.

B =
[
xc, yc, zc, l, w, h, θ, φ, ϕ, class

]
, (1)

where (xc, yc, zc) is denoted center coordinates of the rect-
angle, (l, w, h) is denoted the length, width, and height of
the rectangular, (θ, φ, ϕ) are indicated and roll respectively.
For the current autopilot stage, all objects are on the ground,
so only the yaw angle θ needs to be considered. As shown
in Figure 2b. class indicates the class of the 3D object.
In addition, in some methods, the object’s speed is also
predicted [8].

Commonly sensors: Unlike 2D object detection, which
typically employs only cameras as input, 3D object detection
can use several sensors as input to the network. Cameras,
LiDAR, and radar are currently the most prevalent sensors.
Following that, we will provide a quick overview of various
sensors.

Cameras: Cameras are ubiquitous in our lives because
they are inexpensive to manufacture, have great imaging
effects, and are passive sensors. The camera can produce an
(H × W × 3) image, where (H, W ) are the height and width
of the image, and 3 is the number of channels per pixel,
generally referring to RGB channels. The camera can acquire
high-resolution images of the outside world and visualize the
shape of objects, but in 3D object detection, the camera has
limitations. First, cameras have poor nighttime imaging, and
although some algorithms [9] enable cameras to image at night
to approximate daytime levels, this is achieved by increasing
exposure time at the expense of time, which is a fatal problem
at autonomous driving. Second, the camera does not provide
good depth information, and using 2D images to forecast
depth information with a trained network frequently results in
substantial inaccuracies. Furthermore, the camera is weather-
sensitive, and imaging is far less effective in wet and foggy
conditions than in sunny conditions.

LiDAR: Light Detection and Ranging, or LDR for short,
is a common type of active sensor. In order to determine
an object’s precise 3D structure, LiDAR actively generates
laser beams and collects information about the reflected light,
in contrast to cameras, which passively take in data. Due
to its high deployment cost, autonomous driving is now
constrained by the use of LiDAR despite its ability to directly
capture an item’s 3D structure and accurate depth information.
Further, because of its short wavelength, LiDAR is subject to
interference from numerous types of material in the air. Hence

its effectiveness will be marginally decreased in bad weather
conditions.

Radar: Radar is an active sensor with the same basic
principle as LiDAR, but unlike LiDAR, Radar works by
generating radio waves. Because radio waves have a larger
wavelength, Radar works across a longer distance. Radar has
a limited resolution, and unlike LiDAR, it cannot directly
acquire the contour of an object, making it ineffective for
detecting small objects [10], [11].

Conclusion: 3D object detection algorithms gather sensor
information and make decisions about the surrounding targets,
which is an important aspect of autonomous driving. The
driving environment is complicated and varied, and 3D object
identification algorithms for autonomous driving scenarios
demand a high level of accuracy and reliability. Each sensor
has strengths and drawbacks. Thus it has become popular to
combine many sensors for object detection.

B. Single-Sensor-Based 3D Object Detection

As its name implies, single-sensor-based 3D object detec-
tion refers to the prediction of the 3D Box of a target using
data from a single sensor. There are two primary popular
classifications: 3D object detection via Cameras and 3D object
detection via LiDAR. Due to the fact that our research focuses
on multi-sensor fusion schemes, we will only briefly introduce
the techniques based on the aforementioned classes without
providing a comprehensive review.

1) 3D Object Detection Through Cameras: Depending on
the types of cameras available, camera-based 3D object detec-
tion can be further subdivided into more specific categories.
Some examples of these subcategories include monocular
camera-based 3D object detection, multi-vision camera-based
3D object detection, and stereo-based 3D object detection.

a) Monocular camera-based: Monocular cameras typi-
cally feature only one lens and cannot directly determine depth
in detail. They give information in the form of pixel intensities
that can visually reflect an item’s shape and texture infor-
mation. They are a favored choice for monocular 3D object
detection due to their low cost and superior imaging [12].
Camera-based 3D object detection performs depth estimation
directly on the image so that it can be seen as an evolution
from 2D object detection. In recent years, most camera-
based 3D object detection has been done using monocular
cameras [13], [14], [15], [16], [17], [18], [19].

b) Multi-vision camera-based: Currently, self-driving
vehicles are typically outfitted with numerous cameras to
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Fig. 3. Camera night imaging effect (a) and LiDAR points projected onto the 2D image (b).

capture forward or 360◦ information from multiple viewpoints.
3D object detection based on multi-view cameras retrieves the
same item from multiple perspectives and aggregates object
properties to complete 3D object detection. This method is
comparable to object re-identification [20], [21].

c) Stereo-based: Stereo cameras, often cameras with
two or more image sensors, can perceive depth information
by employing the human eye concept, which makes use of
binocular parallax for stereo imaging [22], [23]. In contrast to
monocular camera images, stereo camera images frequently
appear in pairs and can be used to generate a depth image
based on the correlation between the two images [24], [25],
[26]. Although stereo cameras can gather more accurate depth
information, 3D object detection based on stereo cameras still
has a significant accuracy and performance gap compared
to 3D object detection based on LiDAR. Recent years have
seen an explosion in the number of 3D object identification
solutions that are based on stereo cameras [15], [27], [28],
[29], [30].

2) 3D Object Detection Through LiDAR: Although 3D
object detection using 2D photos is very easy to implement,
2D images lack depth information, and depth information
inferred using convolutional networks is frequently erroneous.
With the advent of PointNet, it is now possible to conduct
convolutional operations on 3D point clouds directly. Because
point clouds give correct depth information, LiDAR-based 3D
object detection is now the primary single-modal 3D object
detection method [31].

LiDAR-based object detection is generally divided into
three processes: (1) data processing, (2) feature extraction, and
(3) prediction. We introduce these processes next.

a) Data processing: LiDAR will represent the acquired
data as a point clouds, which is a set of data points in
space, and these points can represent 3D shapes or objects.
Usually, point clouds are unstructured representations, espe-
cially in the point clouds acquired by onboard LiDAR,
sparsity, and its unevenness. Currently, the widely used
64-line LiDAR acquires as many as 1,152,000 data points
per second, so the direct use of the original point clouds
for the calculation can lead to a large computational effort.
Therefore, in practical applications, the point clouds are often
down-sampled.

b) Feature extract: After the initial data processing, the
next step is to make the network learn features from the point
clouds data. In general, several points nearby are often linked
together for feature learning. Specifically, relevant points are
collected within a predefined scale using ball or rectangular
queries. Subsequently, with feature encoder aggregation points
and contextual features, the Formation of higher-level semantic
features.

c) Prediction: After successfully aggregating features
from the input data, the final job is to use the new features as
input to the detection head to generate the final prediction.

The LiDAR-based 3D object detection solutions in recent
years are [32], [33], [34], [35]

C. The Problem of Single-Modal 3D Object Detection

Although single-sensor 3D object detection is straightfor-
ward to build and certain approaches have performed well in
large dataset challenges, these solutions are not robust enough
for use in real-world driving scenarios [36], [37]. Cameras
and LiDAR have inherent limitations, making it difficult to
meet the requirements of all-weather and real-time operational
needs [38], [39]. Camera-based approaches do not give entire
3D geometric information, and the computational cost grows
as camera resolution increases [40]. As illustrated in Figure 3a,
weather conditions have a significant impact on the camera.
Although LiDAR-based methods yield higher detection accu-
racy than camera-based methods [41], LiDAR-only solutions
are not yet widely adopted due to high deployment costs. Fur-
thermore, as depicted in Figure 3b, LiDAR has highly sparse
point clouds on small objects at large distances [42]. Real-
world driving environments are complicated and changeable,
and single-sensor solutions are frequently inadequate.

D. Multi-Sensor Fusion

a) Introduction: As described in Section II-C, each type
of sensor has limitations, and 3D object detection using a
single sensor cannot meet the needs of all-weather driving
scenarios, so fusing data from multiple sensors together for
3D object detection is a major trend, and more and more
teams have proposed 3D object detection algorithms based
on multi-sensor fusion, which we will discuss in detail in
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TABLE I
COMPARISON OF POPULAR MULTI-SENSOR DATASETS APPLICABLE TO AUTONOMOUS DRIVING, INCLUDING YEAR,

NUMBER OF CATEGORIES, NUMBER OF SCENES, AND NUMBER OF 2D ANNOTATIONS (N-2D) AND 3D (N-3D)
ANNOTATIONS, AS WELL AS SPATIO-TEMPORAL FACTORS (NIGHT/RAIN)

Section IV. Following that, we will briefly overview the
multi-sensor fusion system and tasks. Table I depicts the
general comparison of the dataset.

b) Definition: In 3D object detection, multi-sensor fusion
refers to object detection using two or more sensor data; for
example, LiDAR can compensate for cameras’ poor imaging
rate at night, and LiDAR and radar can complement each
other for long-range and small objects. Multi-sensor fusion 3D
object identification categorization is distinguished primarily
by fusion granularity, fusion location, and fusion input. The
most essential of them are distinguished by the fusion position;
thus, in Section IV, we separate distinct fusion schemes
primarily by the fusion position and offer a full explanation.

c) Task: In contrast to conventional 3D object recogni-
tion tasks, the multi-sensor fused 3D object detection solution
requires immediate responsiveness because it is largely used
in autonomous driving applications. This involves making
decisions within a time frame of 50 milliseconds in order to
ensure the safety of the vehicle. Additionally, it requires adapt-
ability across varying environments and conditions, enabling
predictions even in the event of a single sensor failure.

III. DATASETS AND METRICS

The ImageNet [44] dataset is a significant dataset in the
field of artificial intelligence and has driven the development
of deep learning methods in the field of artificial intelligence.
As the learning material of neural networks, datasets are
crucial in deep learning.

Unlike ImageNet [44] for image classification, datasets for
autonomous driving scenarios need to have both 2D and 3D
annotations in order to facilitate research more widely. Next,
we discuss some popular 3D object detection datasets for
autonomous driving.

A. Datasets

The KITTI [45] dataset is a publicly available dataset
created by the Karlsruhe Institute of Technology in Germany
and the Toyota Institute of Technology in the U.S. that uses
specialized data collection vehicles to collect data from real
traffic scenes.

The KITTI [45] dataset contains data from real driving
scenes in urban, rural, and highway scenarios, with up to
15 vehicles and 30 pedestrians per image, as well as vari-
ous levels of The KITTI [45] dataset, contains data from a

variety of sensors, such as cameras, LIDAR, and combined
GPS/IMU navigation and positioning systems. The object
detection dataset contains 7481 training data and 7518 test
data with sensor calibration and accurate 2D frames and 3D
frames with KITTI [45] annotated category labels including
car, Van, Truck, Pedestrian, Person (sitting), Cyclist, Tram,
and Misc (e.g., Trailers, Segways) or DontCare. In addition,
the KITTI [45] dataset was classified into three cases based
on whether the target was obscured, the degree of obscuration,
and the height of the box: “easy”, “moderate” and “difficult”
in order to accurately determine the accuracy of a model in
all aspects.

The nuScenes [43] dataset is a public large-scale dataset
for autonomous driving developed by the Motional team,
which collects data primarily in the Singapore and Boston
areas, two cities known for their dense traffic and challenging
driving conditions. In addition, nuScenes [43] manually selects
1000 scenarios by humans out of all collected scenarios,
including 700 scenarios for training, 150 scenarios for valida-
tion, and 150 scenarios for testing, each lasting approximately
20 seconds.

The complete dataset includes approximately 1.4 million
camera images, 390,000 m lidar scans, 1.4 million millimeter
wave radar scans, and 1.4 million object-bounding boxes in
40,000 keyframes. nuScenes [43] is inspired by the ground-
breaking KITTI [45] dataset. However, its use of more sensors
(6 cameras, 1 lidar, 5 radar, GPS IMU) is the first dataset
to offer the entire sensor suite from autonomous driving and
contains seven times more object annotations than KITTI [45].
It also includes night and rain scenarios, which are unavailable
in the KITTI [45] dataset.

In addition to this, nuScenes [43] annotates object-level
attributes such as visibility, activity, and pose. More notably,
in July 2020, nuScenes launched nuScenes-lidarseg, which
uses 32 possible semantic tags to label each lidar point
in keyframes for nuScenes [43] as a response to the lidar
semantic segmentation task.

The Waymo Open Dataset [46] is a dataset released by
Google Waymo Driverless in 2020, with 5 RGB cameras
and 5 LiDARs (three in front of the car, one on the roof, and
one behind the car). Its annotations include “car”, “pedes-
trian”, “bicyclist” and “sign”. Waymo Open also includes
nighttime and rainy weather scenes.

The ApolloScape dataset [47], released by Baidu in China,
comprises about 100K image frames, 80k lidar point clouds,
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and 1000km trajectories for urban traffic. The ApolloScape
dataset was gathered under a variety of illumination conditions
and traffic volumes, including highly complicated traffic flows
involving vehicles, pedestrians, and riders.

H3D [48] is a dataset for autonomous directions that was
released by the Honda Research Institute in 2019. It includes
more than one million annotated occurrences and 160 traffic
scenarios that are extremely interactive and congested.

The Argoverse [49] dataset includes recordings across
seasons, weather conditions, and time of day to provide a
wide and realistic range of driving scenarios. It contains a
total of 113 scenes annotated with 3D tracking. Each seg-
ment is approximately 15-30 seconds in length and contains
approximately 11052 tracking targets, of which 70% of the
annotations are vehicles, and the remaining objects include
pedestrians, bicycles, motorcycles, etc.

The DAIR-V2X [50] dataset is the world’s first large-scale,
multi-modal, multi-view dataset for research on vehicle-road
cooperative autonomous driving. It is also the first dataset to
achieve simultaneous spatio-temporal annotation of vehicle-
road cooperative driving, with all data collected from real
driving scenarios, including both 2D and 3D annotation.
In addition, the DAIR-V2X dataset is the first dataset to
achieve simultaneous spatio-temporal annotation of cooper-
ative driving between vehicles and roads. It is important to
point out that onboard sensors collect the data collected by
DAIR-V2X. These onboard sensors comprise 300 lines of
LIDAR as well as high-resolution cameras that are installed
at intersections.

B. Evaluation Metrics

We will go over several essential principles in object detec-
tion before discussing the evaluation metrics currently being
used.

1) IoU (Intersection Over Union): IoU means Intersection
and Union Ratio, which is the ratio of the area of two
intersecting rectangular boxes to the area of two intersecting
rectangular boxes merging in 2D object detection, and the ratio
of the volume of two intersecting rectangular boxes to the
volume of two intersecting rectangular boxes merging in 3D
object detection. The greater the IoU, the more precise the
placement.

2) Precision: Precision is a measure of the probability of a
classifier predicting a true example and is often expressed by
the following formula:

precision =
T P

T P + F P
. (2)

3) Recall: the number of positive samples correctly iden-
tified versus the number of images whose class is really a
positive class, expressed by the following formula:

recall =
T P

T P + F N
, (3)

where T P is the number of true positives, F P is the number
of false positives, and F N is the number of false negatives.

The most commonly used evaluation metric for object
detection is AP(AveragePrecision), which is heavily used

in 2D object detection. The original approach was to extend
AP in 2D object detection to 3D space.

The AP is calculated as follows:

AP =

∫ 1

0
p (r) dr. (4)

In Eq. 4, p (r) is the function of precision about the recall.
Compared to AP , a more popular evaluation metric now is
m AP(Mean AveragePrecision), which can be expressed as
the following equation:

m AP =

∑N
i=1 APi

N
, (5)

where N is the total number of classes and APi denotes the
average precision of the i-th class.

In each of the above representations, precision and recall
are for a single data, while AP is for a certain category of
objects in the entire dataset, and m AP is for the entire dataset.
m AP means that AP is calculated for each category and then
averaged.

IV. MULTI-SENSOR FUSION 3D OBJECT DETECTION

In this section, we provide 3D object detection based on
multi-modal fusion. In addition to fusion input and granular-
ity, the fusion position is significant in identifying different
fusion procedures. As a result, in our work, we focus on
two significant fusion kinds methods: feature-level fusion and
decision-level fusion, depending on the fusion location, and
develop a full description for each. We concentrate on two
sensors, LiDAR, and a camera, which we briefly discussed in
Section II. To help the reader comprehend the following fusion
methods, we will first show the popular data representation of
both sensors in the fusion scheme.

LiDAR: LiDAR Points: LiDAR Points: Figure 4a depicts
the initial point clouds created by LiDAR. A point clouds
is a collection of points in a 3D coordinate system that are
typically described by x , y, and z coordinates as well as reflec-
tion intensity. Point clouds give correct distance information
between the emitting and reflecting points, are flip-invariant
and scale-invariant, and can be supplied in full geometry.

With the introduction of PointNet [31], convolutional net-
works can now analyze point clouds data directly. The
point-based approach directly uses the original point clouds as
input and can preserve the original information to the greatest
extent possible.

Due to the extremely rich number of point clouds generated
by LiDAR, the computational cost of directly using point
clouds as raw input is extremely high, especially for complex
scenes. Therefore, the point clouds are often sampled, reducing
the computational cost but with some loss of information and
performance.

- Voxels: Generally speaking, the whole point clouds space
is divided into several small spaces of uniform size, which are
called voxels, as shown in Figure 4b, and a voxel contains
several LiDAR points [51], [52], [53], [54], [55], [56]. For
voxels, the same 3D convolution can be used directly to extract
features. It is worth noting that some schemes [51] divide
voxels only on the plane and make the height of each voxel
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Fig. 4. Several common representations of point clouds, each from the same scene.

Fig. 5. Several common data representations of the camera, each figure corresponds to the same scene.

equal to the height of the entire point clouds space; such voxels
are generally called pillar, but in this paper we refer to them
uniformly as voxels.

- Point clouds view: Point clouds view refers to the projec-
tion of 3D point clouds to 2D views, such as BEV, front view,
etc., as shown in Figure 4c, to match with image features.
After conversion to view, 2D convolution can be used directly
to extract features efficiently. BEV view is usually used in
autonomous driving because, at this stage of autonomous
driving, objects do not overlap on the height axis [57], [58].
The conversion of 3D point clouds to 2D view projections
inevitably results in information loss.

Camera: Feature map: A 2D image usually has three
channels of RGB, and a neural network takes a 2D image
as input and performs convolutional operations with a set of
convolutional kernels, which then produces a multi-channel
feature map, as shown in Figure 5b, in other words, what is
obtained after convolutional operations of image pixels is the
feature map.

In most network implementations, already pre-trained back-
bone networks are utilized as image feature extractors, such
as ResNet [59].

- Mask: Image mask is an expression representing a specific
image area. In computer vision, it shows a target’s location and
shape, containing pixel category info to distinguish foreground
and background (Figure 5c).

A. Feature-Level Fusion

Feature-level fusion first involves extracting representative
features from the raw observation data provided by each
sensor, then fusing these features into a single feature vector.
Taking LiDAR and camera as an example, the backbone

network performs feature extraction on LiDAR point clouds
and 2D images, respectively, and then fuses the two features
and uses the fused new features for 3D object detection,
the basic flow chart of which is shown in Figure 6. In the
following, we briefly classify feature-level fusion methods
according to the different fusion input data.

1) Fusion Input Representation: LiDAR Points & image
feature map: Due to the irregularity of point clouds, no effec-
tive and suitable scheme could directly perform convolution
operations on point clouds until PointNet [31] was proposed,
Qi et al. [31] led the way to directly perform feature extraction
on point clouds. Until now, direct feature extraction operations
on point clouds occupy the majority of schemes.

Since the reason that the denseness of LiDAR points varies
greatly, resulting in the use of LiDAR points only for 3D object
detection will lead to slightly poorer detection of distant and
small objects, a very common practice now is to combine
LiDAR point clouds and camera images and fuse them for
3D object detection.

Xu et al. [60] used PointNet [31] to process the point
clouds, and ResNet [59] was used to extract the image features
from the two outputs obtained by combining the new fusion
network.

PointFusion [60] fused the spatial information of the orig-
inal point clouds and the texture information of the image
without any information loss and took full advantage of the
RGB information.

F-PointNet [61] is proposed as a multi-sensor fusion scheme
by the same authors of PointNet [31], PointNet++ [62], which
utilizes a very well-established object detection network in 2D
images [63], [64], [65], [66], [67] to determine the 2D bound-
ing box of an object and use the projection transformation of
the camera to determine a 3D view cone and within this view,
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Fig. 6. Illustration of Multi-Sensor fusion 3D object detection based on feature-level fusion.

cone determines the point clouds data of the object to further
regress to the 3D bounding box.

Wan et al. [68] proposed a dynamic cross-attention module
(DCAN), which learns multiple offsets from the initial projec-
tion to the neighborhood to compensate for the shortcomings
of common fusion schemes, thus accurately improving the
ability to align LiDAR point clouds and image pixel data.

Huang et al. [69] mainly address two problems in 3D
object detection: multi-sensor data fusion and settling on
the inconsistency between classification confidence, which is
a challenge to traditional two-stage networks. EPNet [69]
performs feature enhancement on point clouds and uses image
features to enhance point clouds features directly, no longer
relying on image annotation.

Xu et al. [70] generate preliminary 3D proposals using
SECOND [71] network and generate RoI based on the pro-
posals. Subsequently, feature enhancement is performed on
point clouds in RoI and feature extraction is performed on
multi-view images using ResNet [59] and FPN.

A self-attention mechanism is subsequently used to enhance
domain-specific features, and finally, fusion is performed
by cross-attention to generate the final 3D proposal. It is
worth mentioning that FusionRCNN [70] states that the
cross-attention module is not required, which means that
the two branches of FusionRCNN [70] can perform single-
sensor 3D object detection separately if the cross-attention
module is not applicable.

Yang et al. [72] introduced a new modal interaction strategy
that learns and maintains the representation of each modality
throughout the process in order to exploit their richer original
features better.

LiDAR Points & image mask: Image segmentation can
identify an object more accurately than 2D object detection,
which can achieve pixel-level accuracy. Ordinary 2D object
detection frames usually contain foreground and background,
which can lead to inaccurate image features and 3D feature
fusion. On the other hand, semantic segmentation can be
accurate to each pixel of the object, providing more accurate
image semantic information for fusion and identifying the
corresponding LiDAR points more accurately.

PI-RCNN [73] varies from the preceding approach in that it
employs camera image features. Image segmentation is used
by PI-RCNN [73], which is made up of two sub-networks: the
segmentation network and the detection network.

The segmentation network is used to segment out the objects
in the image at the pixel level, and the authors also created a
PACF module for connecting the two sub-networks, fusing
the characteristics of the two modalities, and then feeding
them to the detection network to generate 3D prediction
results.

The fusion scheme proposed by Vora et al. [74] uses the
fusion of 2D semantic segmentation information onto the
LiDAR point clouds by projection matrix, which achieves
the effect of feature enhancement of LiDAR points, and then
adopts pure point clouds methods such as PointPillars [51] and
PointRCNN [75] for 3D object detection.

Since LiDAR point clouds can acquire the fine structure
of objects and semantic segmentation can achieve pixel-level
segmentation, this can easily correspond point clouds and pixel
data of the same object.

The advantage of semantic segmentation over ordinary
2D object detection is that it can accurately separate the
foreground from the background and reduce the influ-
ence of the background on the fused pixels and point
clouds.

Point clouds view & image feature map:
Bai et al. [76] applied the attention mechanism to the fusion

framework. TransFusion [76] converts the radar point clouds
into a BEV view, the first layer decoder initially predicts the
initial bounding box based on the BEV view, and the second
layer decoder relates object queries and image features to
generate the final prediction.

Unlike mainstream methods, BEVFusion [77] mainly
focuses on camera streams, complemented by LiDAR streams.
Liang et al. [77] converts multi-view images into 3D repre-
sentations, which in turn are represented as BEV images, and
converts LiDAR points into BEV views, using a fusion module
that combines camera BEV views and LiDAR BEV views,
which have the same dimensionality due to both. This fusion
scheme is simple to implement. Also, since BEVfusion relies
mainly on camera streams, this makes BEVfusion the first
framework that can cope with LiDAR failures or LiDAR data
shortages.

Wang et al. [78] fused LiDAR point clouds BEV views,
LiDAR point clouds distance views, and 2D images to achieve
adaptive fusion using their designed attention point fusion
PAF module, which adaptively selects the importance of each
source using an attention mechanism.
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Point clouds voxels & image feature map:
VoxelNet [52] is a pioneering work to sample point clouds

as sparse voxels, which treats several point clouds as a whole,
performs feature extraction, and puts the extracted features
back into 3D space, turning point clouds data into ordered
high-dimensional feature data.VoxelNet [52] has led a series
of studies to sample point clouds as voxels.

Li et al. [79] proposed a new idea to divide the point
clouds space into voxels and then use a sampler to select
the information of essential regions from the image and then
map them to rays and project them into the voxel field.
Subsequently, the voxels on the rays are selected as the
mapping of the image features, thus making full use of the
contextual interactions in the 3D space.

AutoAlignV2 [80] aims to efficiently aggregate image fea-
tures further to enhance the performance of the 3D object
detector. Chen et al. [80] use deformable cross-attention
networks to extract and aggregate features from different
modalities, effectively increasing the speed of the fusion
process. In addition, the Image-Level Dropout Training Strat-
egy designed by the authors enables the network to support
inference using only point clouds, which randomly remove
image fusion features during the fusion process and fill them
with zeros so that the network gradually learns to use 2D
features as optional inputs, which not only speeds up the
training but also improves the final performance.

Sindagi et al. [81] propose a simple and effective early
fusion method that extracts features from the convolutional
layer of a 2D detection network, projects the voxelized ones
onto the image plane to establish an association between the
point clouds and the pixels, and appends the corresponding
image features to the point clouds.

Jiao et al. [82] proposed a new framework, MSMDFu-
sion [82], which focuses on the multi-scale progression of
multi-granularity LiDAR and phase features, which samples
LiDAR point clouds and multi-view images as voxels and sub-
sequently maps the obtained multi-scale LiDAR and camera
features to BEV views for final prediction.
Point clouds voxels & mask:

Inspired by previous work using image masks [73], [74],
Yin et al. [83] further reduced the computational effort by
sampling point clouds as voxels. It also employs various data
enhancement methods, such as random flips and rotations.

2) Fusion Granularity: The simplest implementation of a
multi-sensor fusion operation is to fuse on the smallest data
unit of each sensor, but this approach requires more computa-
tional resources. To balance detection accuracy and inference
speed, depending on the network structure and parameters, all
or localized regions are used for fusion. The common fusion
granularities are RoI ( Region of Interest), Voxel, and Point,
and we will describe these three fusion granularities in detail
next.

RoI-Wise: RoI (Region of Interest), delineating RoI is a
typical operation in image processing similar to the atten-
tion mechanism, after dividing different RoI by algorithm,
which makes the network focus mainly on this part of
the region, improving learning efficiency and reducing
computation.

In multi-modal fusion 3D object detection, a common oper-
ation is to delineate RoI based on 2D image object detection
results, map them to 3D space to obtain 3D frustums, and use
3D detectors to process them [84].

Voxel-Wise: The RoI-wise-based scheme has too large a
perceptual range and is not suitable for small object detection
in some cases. In 3D space, voxels can also roughly represent
the appearance of objects, so Voxel-wise can more accurately
correspond 3D objects to 2D images and separate the back-
ground from the foreground compared to RoI-wise.

As mentioned in the introduction of Section IV, voxels can
be considered as downsampled from point clouds, so the sparse
LiDAR points can be considered as empty voxels, which
can make full use of existing information and filter useless
information, making Voxel-wise more accurate than RoI-wise
fusion.

Point-Wise: In general, Point-wise fusion enhances the
features of LiDAR points. Common point-wise feature
enhancements [85], [86] are using the distance of additional
LiDAR points to the center and corners of a fixed-size box,
as shown in Figure 7a. Xie et al. [73] used the distances from
additional LiDAR points to k proximal points as shown in
Figure 7b.

In addition to the above two point-level feature enhancement
methods, we can also enhance LiDAR point features with
image features by corresponding image features to LiDAR
points. This method can fully use the rich texture information
of images. Point-wise can effectively improve the perfor-
mance compared with RoI-wise and Voxel-wise [74], but this
is achieved by sacrificing memory, and Point-wise implies
feature enhancement for the vast majority of LiDAR points,
especially if no sampling is done.

B. Decision-Level Fusion

Decision-level fusion is the object detection of different data
streams using single-sensor detection networks separately. Its
network structure and implementation are simpler than feature-
level fusion, as shown in Figure 8.

After getting the detection results of different modalities, the
results are fused using the designed fusion module to adjust the
single-sensor 3D proposal and generate the final 3D proposal
to obtain more accurate prediction results.

Compared with feature fusion, decision-level fusion has a
modular design, which makes it easy to test the designed
fusion module using different detection heads. Decision-level
fusion does not need to deal with the direct relationship
between pixel points and LiDAR points and is less compu-
tationally intensive.

Pang et al. [87] provide a low-complexity multi-sensor
fusion framework that operates before NMS (Non-maximum
suppression) of candidate frames from arbitrary 2D and 3D
detector outputs, exploiting their geometric consistency to
produce more accurate 2D and 3D detection results.

MV3D [41] is a classical multi-sensor fusion framework
that takes the bird’s eye view and front view of LIDAR point
clouds as well as an image as input. It first generates 3D object
proposals from the point cloud’s bird’s-eye view, corrects the
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Fig. 7. Two common types of Point-wise feature enhancement.

Fig. 8. Illustration of Multi-Sensor fusion 3D object detection based on decision-level fusion.

proposals using features from the other views, and finally fuses
the proposals from the three views as the final prediction.

AVOD [88] is more like a combination of feature-level
fusion and decision-level fusion, where BEV features from
the point clouds, and camera image features are extracted
separately, and the two features are fused at the feature level
to produce an initial 3D proposal. The features are then used
again to correct the proposal, and the fusion becomes the final
prediction.

A non-negligible problem of decision-level fusion is its
inability to use rich intermediate features, and its detection
accuracy depends on the selected single-sensor detection net-
work.

It is worth mentioning that most of the current experi-
ments on algorithms related to 3D object detection are based
on open-source frameworks [89], [90], which means that
researchers can easily start testing using existing detection
networks, which facilitates research on decision-level fusion.
We believe that decision-level fusion may become a funda-
mental operation, both independently as a fusion solution and
as an enhancement to feature-level fusion. With its parallel
multi-branch structure, decision-level fusion can easily avoid
the problem of fusion structures not working properly in the
event of single-sensor failure, and it can combine the outputs
of multiple models and multiple sensors, effectively improving
robustness.

C. Summary of LiDAR-Camera Fusion Methods

Lidar and cameras can provide powerful environmental
awareness and are the main sensors for self-driving cars.
However, due to its own limitations, the single-sensor solu-
tion cannot accurately complete 3D object detection. The
multi-sensor solution combines the advantages of each sensor
to push the accuracy of 3D object detection to a new level.
Specifically, cameras provide high-resolution images suitable
for perceiving the appearance and texture characteristics of
objects, while LiDAR provides the precise location, distance,
and shape of objects. It is worth noting that the gain effect
brought by camera image features is related to the degree of
point cloud sparsity. When the point cloud is relatively sparse,
the image features can bring greater gain; while when the point
cloud itself is relatively dense, the gain effect of the image
feature is not obvious.

D. Other Fusion Methods

We have described the LiDAR-camera fusion scheme in
detail, below we briefly discuss other sensor fusion methods
such as radar-camera, LiDAR-radar, LiDAR-radar-camera,
etc. CenterFusion [8] uses radar and camera data for 3D object
detection.

It first detects the centroids of objects on the image. It gener-
ates a heat map based on the centroids [91], and subsequently
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TABLE II
COMPARISON OF SOME POPULAR MULTI-SENSOR FUSION ALGORITHMS. SOME OF THE METHODS

ARE TESTED ON MULTIPLE DATASETS, AND WE ONLY LIST ONE OF THEM HERE

uses a flat truncated head-based method to correlate radar
points with the centroids of objects on the image to obtain
critical depth information and finally generate predictions.

According to Kim et al. [92], radar is superior to LiDAR
in terms of reliability and cost convenience; nevertheless, all
of the existing radar-based fusion approaches focus on the
fusion of results. Consequently, Kim et al. [92] came up with
a new method for result-level early fusion that correlated
image suggestions with radar points. After that, they used
cross-attention-based continuous feature fusion to establish the
contextual relationship between radar and camera in order to
achieve robustness and attentional fusion.

The challenge of using radar is the noise and measurement
ambiguity. To address this issue, Yang et al. [93] proposed the
RadarNet [93] approach, which features early fusion based on
voxels and later fusion based on attention mechanism.

DeepFusion [94] takes a modular design that fuses in
different combinations of LiDAR, camera, and radar, with
a specially designed feature extractor that can be easily
switched for different device inputs, and which supports mul-
tiple combinations of LiDAR-camera, LiDAR-camera-radar,
and LiDAR-radar.

V. STATE-OF-THE-ART METHODS COMPARISON

A. Model Comparison

To describe the methods in Section IV-A more intuitively,
Table II makes a brief comparison of these methods to
visualize the similarities and differences of LiDAR-camera-
based fusion schemes.

The methods in Table II are classified overall according
to fusion location and in feature-level fusion schemes with
a wide range of classifiable levels, according to the feature
representation in Section IV-A.

The fusion strategy design of each method is closely related
to the main dataset selected, so the table summarizes the
datasets selected by each method. Some of these schemes were
tested on multiple datasets, and the results are shown here for
only one of the datasets.

Through the comparison, we can conclude that.
• While using raw points retains complete geometry, it’s

computationally intensive. Final detection still hinges on
fusion module design, feature enhancement, and more.

• Overall, combining image masks with LiDAR features
yielded strong KITTI dataset results. Because image
masks provide per-pixel semantic features and accurate
representations.

• Most of the current decision-level fusion is used in com-
bination with feature-level fusion to take full advantage
of multi-sensor data and multiple models. Feature-level
fusion can provide a more semantically rich feature
representation, while decision-level fusion can combine
the detection results from multiple sensors.

B. Visualization and Discussion

In order to visually represent the outcomes of 3D object
detection and analyze the similarities and differences between
multi-sensor and LiDAR-only solutions, a set of representative
solutions were selected for visualization on the KITTI [45] and
nuScenes [43] datasets.

First, we used Mvx-net [81] and PointPillars [51] and
selected four representative scenes in the KITTI dataset for
comparison, and uniformly set the threshold to 0.5. General
note: the scenes in Figure 9, 10, 11, 12 are one-to-one,
Figure 9 is the camera view, Figure 10 is the ground truth
box, and Figure 11, 12 are the PointPillars and Mvx-net,
respectively detection results. The object in the yellow circle in
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Fig. 9. Camera image from KITTI [45], the red circles are our targets of additional interest.

Fig. 10. Ground truth in KITTI [45] labelling.

Fig. 11. Visualisation results from PointPillars [51], where the original camera image of each scene is shown in Figure 9.

Fig. 12. Visualisation results from MVX-Net [81], where the original camera image of each scene is shown in Figure 9.

Figure 10, 11, 12 corresponds to the object in the red circle
in Figure 9. The point clouds have been tilted for viewing
purposes.

As shown in Figure 9a, we paid extra attention to the
pedestrians within the red circles. Due to the very close
proximity of the pedestrian and the vehicle behind it, it does
not seem to be very easy to distinguish in point clouds
space alone, which also leads to the PointPillars [51] not

being successfully detected. In this case, the texture and color
features from the camera acted as supplementary information
to the point clouds and were able to allow successful detection
by the multi-sensor scheme Mvx-net [81]. The comparative
results are shown in Figure 11a, 12a.

There is a similar scene, as shown in Figure 9b. The
pedestrian in the yellow circle is very close to the grass in
the background, whereas in point clouds space, it is usually
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Fig. 13. (a): Image of six cameras deployed around the vehicle, image from nuScenes [43]. (b): BEV view of the 3D detection result, where the red
translucent is labeled as ground truth and the green translucent is labeled as the predicted box. The areas corresponding to each of these cameras have been
marked on the images.

impossible to distinguish accurately between foreground and
background, which is the reason why PointPillars [51] did
not identify this target. The comparative results are shown in
Figure 11b, 12b.

Another problem faced by pure point cloud solutions is the
difficulty of distinguishing between two objects when their
point cloud information is very similar. Again, we focus on
the area inside the red circle in Figure 9c. The vehicle inside
the red circle and the object next to it are easily distinguishable
from the camera image. However, they share a high degree of
geometry in point clouds space, so this causes PointPillars [51]
to incorrectly identify the clutter as a vehicle, a situation that
is improved in Mvx-net [81], see Figure 11c, 12c for details
of the comparison results.

Let’s look at another relatively dense scene that has a
large number of occlusions and truncations, as shown in
Figure 9c, where we pay extra attention to the objects within
the red circles. As can be seen from the comparison results
in Figure 11c, 12, PointPillars [51] did not recognize any of
the targets within the circles, while they were successfully
detected in Mvx-net [81].

After comparing various scenarios, we conclude: 1. When
the target is clear or slightly obscured, both multi-sensor and
LiDAR-only methods accurately identify it; 2. For similar
target point cloud shapes, multi-sensor outperforms LiDAR-
only; 3. Multi-sensor excels over LiDAR-only when the target
is very close to a background object.

In addition, we also show its results visualized on nuScenes
[43] using BevFusion [77]. We replaced the image backbone
network [95], [96] of BevFusion [77] and retrained it, and
visualized some of the results. BEVFusion [77] uses LiDAR
with images from six surround view cameras as input and
is able to perform 3D object detection in 360◦, so we
show the visualization results in the BEV view, as shown
in Figure 13.

As can be seen from the camera view in Figure 13a, this
is a very dense scene with a lot of occlusion and truncation,
and BEVFusion takes image up-dimensioning operations to
map the image features into BEV space, enabling many
hard-to-detect-objects-to be detected successfully, as shown in
Figure 13b.

BEVFusion [77] as a representative method for 3D object
detection from a BEV perspective. It maps sensor inputs
into a unified BEV space in pre-processing and is applicable

not only to 3D object detection but also to a variety of
downstream tasks, including lane segmentation, BEV map
segmentation, etc.

In addition, we visualized CenterFusion [8] for comparing
LiDAR with radar, as shown in Figure 14, the number of radar
points is sparser compared to the number of LiDAR points.
CenterFusion [8] takes the scheme of the ROI region in the
center of the heat map.

As can be seen from Figure 14, due to the characteristics
of radar, radar points are not accurately projected onto the
target. There are no available radar points (marked in green)
on the pedestrian in the rightmost scene of Figure 14, and
the radar points that should fall on the pedestrian fall on the
left side of the pedestrian, which may be the projection error
caused by the sensor jitter. From the result, the pedestrian is
still accurately identified in the result with the correction of
the camera stream.

VI. OPEN CHALLENGES AND FUTURE

This section focuses on the current issues and future trends
in multi-sensor fusion three-dimensional object detection.

A. Challenges

1) Data Alignment: 3D object detection based on multi-
sensor fusion requires the fusion and alignment of input from
different modalities [97].

The first issue is that these sensors frequently have different
viewing angles; for example, due to the nature of LiDAR,
it must be installed on the vehicle’s top, whereas a standard
camera would be mounted in front of the vehicle.

Even though the LiDAR and camera are set in exactly
the same position, they have distinct viewing angles. The
current common solution is to use the projection matrix to
correspond LiDAR points and picture pixels one by one, and
the projection matrix must be strictly calibrated according to
the device parameters, device distance, and device view angle,
which is a strict and time-consuming task in which errors are
unavoidable.

Furthermore, the driving environment is complex, and
the road surface is invariably uneven. A minor jitter might
cause sensor misalignment, and if the relative sensor position
changes, the calibrated projection matrix is no longer valid.
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Fig. 14. CenterFusion’s [8] visual output. From top to bottom, the prediction boxes on 2D images, the pillar extension visualization, and the center heat
map.

One alternative approach is combining the LiDAR and the
camera into a single unit. This reduces the risk of misalign-
ment between the LiDAR and the camera to the greatest extent
possible [47].

In addition, the imaging principles of the camera and the
LiDAR are not the same. The camera acquires information
from the real world using the “small-aperture imaging” prin-
ciple, whereas the LiDAR acquires data in the real 3D world.
This results in a significant difference in how the same object
is represented. In addition, the dimensions of the LiDAR and
the camera dimensions are different, making it challenging to
combine the data from the two separate dimensions.

2) Lost Information: Another challenge is the loss of
data during processing, often due to sensor differences,
processing constraints, and algorithms. For instance, when
projecting point clouds onto the image plane for features, the
camera-LiDAR accuracy disparity, as in Figure 3b, leads to
missing LiDAR projections on some pixels. Relying solely
on these projected pixel features wastes image features. Also,
in point cloud voxel allocation, where voxel sizes are usually
not too large (e.g., [0.16,0.16,0.5] in KITTI), sampling trims
computational load by discarding points, causing a loss of
information. This absence of key points can reduce overall
detector accuracy.

Another issue that requires more attention is the issue of
sensor failure. When sensors fail and do not provide data
properly, they are typically populated with zero data in order
to ensure the availability of the model, but a large amount of
zero data is not effective for object detection. Furthermore,
self-driving vehicles can also be subject to cyber-attacks [98]
or visual attacks [99], in which case the vehicle may plan the
wrong path and cause a traffic accident.

We propose to introduce a dynamic selection strategy in
a vehicle-grade multi-sensor fusion scheme, whereby when
the computer detects abnormal input data from a sensor,
it suspends the use of that sensor and places computational
resources on other sensors to ensure the safety of the vehicle.

3) Data Augmentation: Data augmentation is a frequent
approach in deep learning to ensure that neural networks can
completely utilize current datasets, train more efficiently from
limited inputs, and successfully reduce model overfitting [100].

We can efficiently perform data augmentation in detection
networks that use a single modality as input information,
such as scaling, rotation, flipping, object cut-and-paste, etc.
For multi-sensor data augmentation, it is necessary to keep
each modality synchronized for augmentation and construct
mapping relationships.

Zhang et al. [101] proposed a new multi-sensor enhance-
ment method by segmenting the point clouds and images of
objects, pasting them into the scene synchronously, and then
building mapping relationships based on the projection matrix.
Y. Li et al. [79] build on [102] by adjusting the occlusion
relationship of the copied objects to make them more realistic.

Prakash et al. [103] proposed a new method of structured
domain randomization (SDR), which makes the model more
generalizable by randomly placing objects and distractors
through the probability distribution generated by a specific
problem. It is worth mentioning that Tan et al. [104] proposed
a method to automatically generate realistic traffic scenes with
the flexibility to insert various classes of objects in the desired
scenes.

4) Datasets and Metrics: Datasets: The importance of
datasets as the foundation of deep learning cannot be over-
stated. Today’s popular 3D object detection datasets suffer

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Yantai University. Downloaded on October 07,2023 at 02:40:34 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: MULTI-SENSOR FUSION TECHNOLOGY FOR 3D OBJECT DETECTION 15

from the following problems: incomplete categories, unbal-
anced categories, too few occluded and truncated objects, and
too few small objects at a distance.

Despite the fact that the nuScenes [43] dataset contains
1000 scenes, these scenes are not even close to being indicative
of the complex and varied driving scenarios that exist in the
real world. The majority of annotations in popular 3D object
detection datasets still come from cars and people, which
causes the detection framework to have difficulty identifying
other types of objects, such as guardrails and roadblocks.

In addition, the perspective of the onboard sensors is cov-
ered in real-world driving conditions by the majority of the
objects in the environment. Due to the difficulties of labelling,
the number of truncated or obscured targets is quite low among
the popular datasets that are currently available.

Evaluation Metrics: It is worth noting that there are no
specialized evaluation metrics for evaluating the success of a
fusion scheme; rather, the mAP of the dataset is used to assess,
and then the ablation experiment is utilized to establish that
the fusion module is the one that accomplishes the job. As a
result, a 3D object identification framework with multi-sensor
fusion should be evaluated using a measure that incorporates
computational fusion overhead, fusion accuracy impact, and
robustness.

B. Research Trends and Future

1) Research Trends: Deep learning has achieved remarkable
success in the field of object detection, and it has also been
widely used in 3D object detection. In terms of multi-sensor
fusion 3D object detection solutions at this stage, most
approaches still focus on the design of the fusion module.
We speculate that future research will continue to focus on
deep learning methods and that the research will gradually
move towards network structure design, proposing a backbone
network specifically for 3D tasks. Additionally, large models
trained through massive datasets possess significant advan-
tages in multi-category detection tasks. However, they also
require substantial computing resources and high-performance
hardware for inference. With ongoing advancements in hard-
ware technology, there is a promising outlook for the extensive
application of large models in the field of autonomous driving.

In terms of data processing, converting sparse heterogeneous
point clouds into ordered voxel representations can facilitate
neural network handling. In addition, regions without point
clouds can be very easily located based on the voxel index,
and processing of the region can be skipped by strategies such
as sparse convolution, thus reducing computational complexity
and speeding up the network’s inference. In addition to this,
neighboring points in point clouds will often be in the same
or immediately adjacent voxels, which helps to preserve the
spatial relationships of the point clouds and build contextual
information as a way to improve the algorithm’s ability to
perceive local and global structure. In summary, voxels have
the advantages of regularised representation, simplified data
processing, and ease of handling spatial relationships, and
these advantages can facilitate further processing and applica-
tion of point clouds data. Image data is crucial in multi-sensor
fusion. Depth prediction from images gains traction, enabling

applications like mapping image features to 3D space and
complementing point clouds via pixel depth estimation.

2) Future: In the field of computer vision, the domain of 3D
object detection is experiencing significant growth. However,
there are still opportunities for further advancements. In this
context, we propose several potential approaches to enhance
the performance of 3D object detection systems and offer
insights for future research endeavors.

• More data. In addition to LiDAR and image information,
radar information is also available in some datasets, but
very little work has gone into using radar information. As
described in Section II-A, radar is not as high resolution
as LiDAR, but radar performs more consistently in bad
weather. More sensors mean a higher degree of assurance,
and to improve the speed of inference, radar can be used
as a backup sensor to enable radar’s route of operation
in the event of anomalies in the LiDAR input data.

• Time series. Frame rates often differ between sensors, and
forcing the algorithm into a blocking state to synchronize
different sensor data would inevitably result in a loss of
inference speed. One solution uses prior frame data for
reasoning, compensating for inference speed but struggles
with fast-moving targets. Alternatively, in real driving
scenarios, targets such as vehicles and pedestrians are
constrained by the traffic topology, and information such
as High-accuracy maps, lane lines, and signs predict
trajectories, letting previous frame inferences apply.

VII. CONCLUSION

The rapid development of autonomous vehicles has led to
a surge in the use of 3D object detection techniques. This
study presents a survey of recent years’ worth of multi-sensor
fusion 3D object identification frameworks, with a particular
focus on LiDAR and camera fusion approaches. First, we will
quickly go through the several common sensors. The following
step involves analyzing and contrasting a number of datasets
that are often used for autonomous driving. We will examine
in fully the LiDAR-camera fusion-based 3D object detection
strategy from the fusion position so that the reader will have
a better understanding of the popular multi-sensor fusion 3D
object detection schemes. After that, we will provide a quick
overview of the fusion strategies for the remaining sensors.
At this point, we explore the challenges in multi-sensor fusion
3D object identification and the emerging developments in this
field.
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