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DRGAN: A Detail Recovery-Based Model for
Optical Remote Sensing Images Super-Resolution

Yongchao Song , Lijun Sun , Jiping Bi , Siwen Quan , and Xuan Wang , Senior Member, IEEE

Abstract— The need for high-resolution (HR) remote sensing
images has grown significantly in recent years as a result of
the rapid advancement of fine-sensing technologies. However,
increasing sensor resolution usually requires a costly investment.
To tackle this challenge, super-resolution (SR) methods for
remote sensing images have emerged as a cost-effective alternative
to enhance the quality and usability of existing low-resolution
(LR) images. Although many current methods have achieved
some reconstruction results, they often suffer from problems such
as transition smoothing and artifacts. To solve these problems,
we propose an SR reconstruction model for detail recovery
based on generative adversarial networks (GANs), referred to as
DRGAN. Specifically, unlike the traditional residual-in-residual
dense block network (RRDBNet), we propose a novel dense
residual network (OSRRDBNet). It uses dynamic convolution and
self-attention mechanisms to recover the rich detailed information
in the image more effectively. In addition, we employ an average
pooling layer to enhance the ability to capture HR image features.
By conducting experiments on three different remote sensing
datasets, DRGAN shows remarkable reconstruction results and
successfully recovers the rich detail information in the images.

Index Terms— Detail recovery, dynamic convolution, gen-
erative adversarial network (GAN), optical remote sensing,
super-resolution (SR).

I. INTRODUCTION

WITH the increasing demand for fine remote
sensing in various industries, the application

scenarios of high-resolution (HR) remote sensing images
are becoming increasingly extensive. Super-resolution (SR)
image algorithmically enhances the quality and detail of
LR image [1], [2], [3]. Currently, SR is receiving more and
more attention and exploration in the field of remote sensing,
including HR map generation [4], multimodal data fusion [5],
and target detection [6].

The process of SR image is quite challenging. This is
because the degradation of an image is not predictable, making
it difficult to find an exact solution. Given an LR image,
there may be countless HR versions, and the complexity
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Fig. 1. Visual comparison of our DRGAN with the shuffle mixer and
EDiffSR. DRGAN generates richer texture details that are more consistent
with human eye perception.

makes image SR a daunting task. Therefore, it is crucial
to research and develop an efficient method to improve the
quality of remote sensing images, as it has significant practical
applications.

Recent advancements in SR have been driven by deep
learning-based methods [7], [8], [9], [10], [11]. While many
of these methods aim for a high peak signal-to-noise ratio
(PSNR), they often result in fuzzy, noisy outputs. For example,
the shuffle mixer utilizes a large kernel convolution in a
convolutional neural network (CNN), leading to the highest
PSNR but a lack of texture detail, as illustrated in Fig. 1.

Many attempts have been made to enhance the perceived
quality of images. For example, the CNN [12] and Transformer
architectures [13], [14], as well as diffusion models [15], [16],
have been employed. However, current methods often use local
pixel smoothing techniques, like the mean square error loss
function. These methods struggle to efficiently capture the
complex structure and nonlocal pixel relationships in an image.
While they may achieve a high PSNR, they often lead to overly
smooth generated images that lack realism and detail.

Generative adversarial network (GAN) is a popular area of
research in SR [17] and contains a generator and a discrimi-
nator. The generator is responsible for producing images with
rich details. The discriminator evaluates the authenticity of the
input image and thus helps the generator to improve the quality
of the generated image. The GAN has been widely used
to explore perception-oriented SR [18], [19], [20]. However,
while these methods recover a certain level of image detail,
they often introduce distortions and artifacts in the SR image.
This means that the details produced by the generator are
different from the real details.
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To address these issues, we propose a GAN-based detail
recovery (DRGAN) SR model to enhance remote sensing
images. This network can produce a pleasing effect that
matches the perception of the human eye while maintaining
authenticity and naturalness. Specifically, in DRGAN,
the generator dynamic convolution and self-attention
residual-in-residual dense block network (OSRRDBNet) has
three important structures: dynamic convolution, self-attention
mechanism, and dynamic convolution and self-attention
residual dense block (OSRRDB). Dynamic convolution can
dynamically adjust the shape and size of the convolution
kernel based on the input data. This flexibility allows the
model to accommodate features of different scales and
structures better, especially when dealing with remote sensing
images. The self-attention mechanism enhances the model’s
ability to perceive the global picture. The OSRRDB structure
is also one of the key factors in its success. OSRRDB
effectively enhances the model’s ability to learn fine-grained
features by stacking multiple residual connections and
dense blocks. The introduction of this structure allows
DRGAN to achieve higher image reconstruction quality
and detail recovery while maintaining model compactness.
The discriminator is inspired by the architecture of VGG19.
An average pooling layer is utilized to enhance the ability
to capture HR image features, encouraging the generator to
generate images that are more similar to HR.

In summary, the main contributions of this article are at
least threefold.

1) We propose a new SR model for remote sensing images
based on detail recovery. By designing OSRRDBNet
as the generator and adjusting the structure of the
discriminator, the generation quality and evaluation of
remote sensing images are significantly improved.

2) We designed the generator OSRRDBNet. OSRRDBNet
consists of a self-attention mechanism, dynamic convo-
lution, and OSRRDB, which significantly improves the
accuracy of SR reconstruction of remote sensing images.

3) The proposed DRGAN outperforms previous SOTA
methods in recovering different degrees of degradation,
demonstrating robust reconstruction performance.

The rest of the article is organized as follows. Section II
reviews the related work on single-image SR reconstruction.
Section III presents detailed information references about the
proposed DRGAN. Section IV provides extensive experimen-
tal results to validate the performance of DRGAN. Section V
summarizes the full text.

II. RELATED WORK

In this section, we provide a brief review of deep
learning-based SR reconstruction methods, highlighting some
reconstruction techniques and research advances.

A. CNN-Based Models

With the advancements in CNNs, there has been significant
progress in CNN-based reconstruction methods. Inspired by
the SRCNN [21], some researchers have proposed deeper
and wider networks [22], [23]. Zhang et al. [24] used

residual networks to address the gradient vanishing prob-
lem. While Liang et al. [25] focused on real-world image
reconstruction using CNN-based multiexpert SR networks.
Zhang et al. [26] introduced a closed-loop network framework
for single-frame SR of infrared remote sensing images in real
environments. Meanwhile, two generative CNNs were also
used for downsampling and SR processing [27]. Additionally,
Zhou et al. [28] developed a method for learning correction
filters through degenerate adaptive regression modules in an
unsupervised manner. However, it is worth noting that most
CNN-based methods rely on pixel smoothing strategies, which,
despite achieving high PSNR, often result in overly smooth
outputs.

B. Transformer-Based Models

Due to its powerful self-attention mechanism, Transformers
exhibit superior reconstruction capabilities when compared
to CNNs. Lei et al. [29] introduced a multilevel augmented
Transformer that uses self-attention to explore features at
different scales, but it does not perform a global search at each
stage. Liang et al. [30] achieved information sharing between
neighboring pixels in single image SR (SISR) by introducing
SwinIR with a shift window mechanism. He et al. [15] devel-
oped a dense spectral Transformer, incorporating ResNet, for
multispectral remote sensing images to learn long-range rela-
tionships within the data. In addition, Xiao et al. [8] proposed
an adaptive method to effectively eliminate the interference of
irrelevant markers, thus making the self-attentive computation
more efficient and compact.

C. Diffusion-Based Models

The recent acceleration of diffusion models has garnered
significant attention. SR techniques based on diffusion mod-
eling primarily generate HR images through a step-by-step
denoising process. Luo et al. [31] proposed averaging equa-
tions to model image degradation while achieving a faster
diffusion process. Xiao et al. [10] introduced an efficient
activation network (EANet) along with a conditional prior
augmentation module to simplify noise prediction and enhance
computational efficiency. Similarly, Yue et al. [32] developed
a Markov chain to facilitate the transfer between HR and
low-resolution (LR) images, improving transfer efficiency.
Although these acceleration methods for diffusion modeling
have made progress in enhancing inference speed and com-
putational efficiency, they still face limitations in adequately
capturing complex image details and textures.

D. GAN-Based Models

GAN is one of the most promising methods for distributing
unsupervised learning. The GAN model optimizes the per-
formance of the generator and discriminator by adversarial
training between these two components. Since its proposal,
the GAN model has garnered extensive attention and research.
Ledig et al. [18] utilize GANs to achieve photo-level SR of
photo-realistic sensory single images. Li et al. [33] utilized
a region-aware adversarial learning strategy to instruct the
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Fig. 2. Overall framework of the proposed DRGAN.

model to focus on the details of adaptively generated texture
regions. However, the robustness of the model is not satis-
factory and the color fidelity of the generated images is low.
Dong et al. [34] explored the potential of a reference-based
SR (RefSR) approach in remote-aware images to reconstruct
the details of LR images using rich texture information from
HR reference images. Furthermore, Li et al. [35] proposed a
semantic-aware discriminator to improve the GAN by intro-
ducing semantic information to produce closer-to-real image
results. In contrast, DRGAN not only emphasizes pixel-level
details but also effectively captures complex textures and struc-
tural information in images by incorporating a self-attention
mechanism and dynamic convolution. As a result, there is a
significant improvement in color accuracy and detail repro-
duction in the generated images. Additionally, the design of
DRGAN prioritizes the model’s robustness and minimizes
artifacts in the generated images, thereby enhancing their
realism.

III. METHODOLOGY

A. Overview

In this article, we aim to design a model suitable for SR
reconstruction of optical remote sensing images. Our proposed
DRGAN framework, as depicted in Fig. 2, consists of three
main components: an LR image input, a generator (G), and a
discriminator (D). The generator can be roughly divided into
three substructures: the OSRRDB, the convolutional layer, and
the upsampling. First, the input image is subjected to feature
extraction. Subsequently, the input features are extracted and
reconstructed at a deep level using OSRRDB. Finally, the
reconstructed image is generated by further processing and
magnification through convolutional and upsampling layers.
The process can be expressed as follows:

Y = f3×3( f3×3( fup( f3×3( fos( f3×3(X)))))) (1)

where Y is the reconstructed HR image and X is the input LR
image. f3×3 denotes a 3 × 3 convolution and fup operation for

upsampling operation. fos denotes processing by the OSRRDB
module.

During training, the generator attempts to transform the
input LR image into a space that closely resembles the real
HR image, thereby creating a reconstructed image. For the
discriminator, we designed the precision extractor VGG19
(PEVGG19) inspired by the architecture of VGG19. Instead
of using the maximum pooling layer, an average pooling layer
is used, which motivates the generator to produce images that
are more similar to the HR. Two metrics, PSNR and LPIPS,
are oriented, and G and D are updated by iterative training
and updating until convergence to SR is similar to HR.

B. Generator Network of DRGAN

As shown in Fig. 3, the main component of our generator
network, OSRRDBNet, is the dynamic dense residual block
OSRRDB. With residual connections, the model efficiently
learns and reconstructs the input image details and features.

Fig. 3 illustrates the architecture of OSRRDB. Each
OSRRDB consists of an OSRDB connected with a self-
attention mechanism. The working process of OSRRDB can
be summarized as follows:

Yn = OSRRDBn(Xn−1) + Xn−1 (2)

where Yn is the output of the nth OSRRDB, Xn−1 is the input
of the previous layer (or the initial input (X)), and OSRRDBn

is the operation of the nth OSRRDB.
The OSRDB is primarily made up of dynamic convolution

and LeakyReLU. Dynamic convolution and activation units are
linked through residual connections, enabling previous layer
inputs and outputs to be fully utilized within each dynamic
dense residual block. The OSRDB design enables feature reuse
and information transfer, enhancing feature extraction. In con-
trast to RRDB architectures containing 3 × 3 convolution and
activation layers, this design can efficiently capture long-term
dependencies and important features in images.
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Fig. 3. Framework of the generator (OSRRDBNet) for DRGAN. Among them, OSRRDB consists of an OSRDB and a self-attention mechanism. OSRDB
consists of dynamic convolution and LeakyReLU.

Fig. 4. Framework of the discriminator (PEVGG19) for DRGAN.

Dynamic convolution is a key feature of OSRRDB. Unlike
traditional 3 × 3 convolution, dynamic convolution can adjust
the shape and parameters of the convolution kernel based on
the input data characteristics. This enables the network to adapt
better to different types and scales of features, leading to more
efficient capture of details and structures in the image.

The self-attention mechanism used in OSRRDB is a
lightweight attention mechanism for enhancing the model’s
ability to perceive the global picture. By introducing self-
attention in each OSRRDB, the network can better under-
stand the dependencies between the parts in the image,
which helps to improve the accuracy and quality of image
reconstruction.

Compared to traditional ReLU, LeakyReLU introduces a
small negative slope when dealing with the activation function.
This makes the network more stable during training and able
to handle a wider range of input distributions.

Our OSRRDB allows the model to perform exceptionally
well in enhancing the resolution of optical remote sensing
images. This is achieved through its distinctive structural
design, which incorporates residual connectivity, dense blocks,
and self-attention mechanisms. It not only accurately captures
long-term dependencies but also extracts and retains crucial
features in the image. As a result, this significantly enhances
the quality and visual appeal of the final reconstructed image.

C. Discriminator Network of DRGAN

As shown in Fig. 4, our discriminator employs an average
pooling layer to enhance its ability to capture HR image
features, prompting the generator to produce images that are
more similar to the HR.

Three main advantages of using an average pooling layer
over a maximum pooling layer in the discriminator are as
follows.

1) Smooth Feature Extraction: The average pooling layer
calculates the average of all the pixels in a specific area,
creating a more consistent feature representation. This
helps to smooth out noise and variations in the feature
map, which is crucial for capturing the overall structure
and texture of an image. It also assists the discriminator
in accurately distinguishing between an HR image and
a generated image.

2) Enhanced Feature Stability: Unlike the maximum pool-
ing layer, the average pooling layer does not lose any
pixel information in the pooled region, but instead
combines the average of all pixels in the region. It makes
the discriminator more robust to changes in image
features, especially when dealing with images with large
variations and noise. By ensuring that the discrimina-
tor accurately evaluates the fidelity and quality of the
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Fig. 5. Visual comparison with the SOTA SR model on the AID test set. The results show that our DRGAN significantly outperforms the comparison method
in terms of high-frequency detail recovery.
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TABLE I
QUANTITATIVE COMPARISON OF FID AND LPIPS WITH SOTA SR MODELS IN THE 30 SCENARIO CATEGORIES OF THE AID TEST SET. THE BEST

VALUES IN EACH CATEGORY ARE HIGHLIGHTED IN RED, AND THE SECOND-BEST VALUES ARE HIGHLIGHTED IN BLUE
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TABLE II
AVERAGE PSNR RESULTS FOR DIFFERENT MODELS RECONSTRUCTED ON

THE WHU-RS19 DATASET. THE BEST VALUES IN EACH CATEGORY
ARE HIGHLIGHTED IN RED, AND THE SECOND-BEST VALUES ARE

HIGHLIGHTED IN BLUE

generated images, the average pooling layer guides the
generator to produce more realistic and detailed SR
images.

3) Low Deviation: The average pooling layer alleviates the
over-reliance on individual pixel values in the feature
map, which reduces the risk of biasing performance
due to the use of max pooling. It helps to retain the
global information present in the feature map, offering
the discriminator the ability to more precisely assess the
quality of the generated image for similarity to the HR
image.

D. Training Optimization Strategies

During the training process, iterative optimization is used
to update the generator and discriminator alternately. The
discriminator gives feedback to the generator about image
quality by comparing the generated SR image with the real HR
image, which helps the generator continuously optimize the
generation process. However, conventional evaluation metrics
such as the PSNR and structural similarity index (SSIM)
used in previous studies may struggle to accurately assess the
perceived image quality in generated images.

To better evaluate the visual quality of the generated images,
we introduce the learned perceptual image patch similarity
(LPIPS) metric, an efficient model that simulates human per-
ception. The similarity between SR and HR images generated
is regularly evaluated by monitoring changes in the model’s
PSNR and LPIPS metrics on the validation set. This ensures
that the generator produces high-quality images that are closer
to the real images.

With this training optimization strategy, not only is the
sensitivity of traditional metrics to numerical errors taken into
account, but also a deeper understanding of the perceived
quality of the incorporated image. It allows us to evaluate
the generator’s performance more comprehensively and further
optimize the training process to obtain more realistic SR
images.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, we conduct extensive experiments on three
datasets to evaluate the performance of DRGAN in different
degradation scenarios.

A. Dataset

The used datasets for training are the ITCVD dataset [36]
and the DLR Munich vehicle dataset [37]. They contain
a total of 135 images. We use three publicly available
remote sensing datasets, including AID, WHU-RS19 [38], and
NWPU-RESISC 45 [39], to evaluate our approach. The AID
dataset is a widely used benchmark for testing and assessing
the performance of various computer vision algorithms in
processing HR remote sensing images. Specifically, it con-
tains different categories of remote sensing images, such as
buildings, farmland, roads, and so on. The image sources in
AID are varied and come from various sensors. It contains a
variety of remote sensing images, including buildings, farm-
land, roads, and more, sourced from a range of sensors. The
AID dataset contains 10 000 images, each with a resolution of
600 × 600 pixels. We use it to evaluate our approach in eight
different ways.

Furthermore, WHU-RS19 includes soaring-resolution
remote sensing imagery from assorted geographic
environments, encompassing 19 distinct feature categories,
such as buildings, forests, and water bodies. This dataset
encapsulates HR, multifaceted feature classes, and authentic
geography, rendering it a treasure trove of experimental
value and potential applications. In our study, each of these
19 categories was degraded one at a time to three degenerate
nuclei of varying sizes to obtain LR. Subsequently, the LR
in this article model was compared with seven different
reconstruction models.

The NWPU-RESISC 45 dataset was exclusively used
for real-world analysis, without any modeling deterioration.
To conserve inference cost, we randomly selected 135 images
from the dataset, encompassing all 45 categories.

B. Evaluation Metrics

In this article, we mainly use six evaluation metrics to
comprehensively evaluate the performance of the proposed
method kernel and other comparative methods. The PSNR
and SSIM [40] are the most frequently used parameters
for image SR. The PSNR evaluates image quality primarily
based on mean square error between image pixels but is not
sensitive to human eye perception. SSIM evaluates image
quality by comparing the similarity of structural information,
including brightness, contrast, and structure. However, SSIM’s
assessment of an image is based on a localized region, not
a global one. The third metric is LPIPS [41], which is a
perceptual image similarity metric based on deep learning.
Unlike the traditional PSNR and SSIM, LPIPS can more
accurately capture differences in image quality as perceived
by the human eye.

Frechet inception distance (FID) [42] is a metric used to
evaluate the quality of generative models, especially widely
used in the GAN. It measures the quality of the generated
image by comparing the distance between the feature dis-
tribution of the generated image and the feature distribution
of the real image. Additionally, we utilized natural image
quality evaluator (NIQE) [43] and average gradient (AG), two
reference-free image quality assessment methods, to evaluate
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TABLE III
QUANTITATIVE COMPARISON WITH THE SOTA SR MODELS IN TERMS OF LPIPS ON THE WHU-RS19 TEST SET. THE BEST VALUES IN EACH CATEGORY

ARE HIGHLIGHTED IN RED, AND THE SECOND-BEST VALUES ARE HIGHLIGHTED IN BLUE
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Fig. 6. Visual comparison with the SOTA SR model on the WHU-RS19 test set with a degeneracy kernel of 0.6. Local zoom better demonstrates image
details.

real-world remote sensing images without the need for HR
images.

C. Implementation Details

This study focuses on the ×4 SR. The number of
OSRRDBs in the model is 23. The model is optimized using
the Adam optimizer with β1 = 0.9 and β2 = 0.999. To ensure
stability, a two-stage training strategy is used. First, we train
the PSNR-oriented generator with the learning rate set to
2 × 10−4. Subsequently, the entire network is trained with
1 × 10−4 as the initial learning rate. A total of 400 000
iterations are performed, with the learning rate decaying to
half of the previous value every 50 000 iterations. All SR
methods covered in this article are retrained on the same
training set. Our experiments are implemented on 2× NVIDIA
RTX 3090 GPUs.

D. Comparison With SOTAs

We compare our DRGAN with state-of-the-art SR meth-
ods, including Bicubic, SRGAN [18], ESRGAN [19],
BSRGAN [20], Beby-GAN [33], DRSR [1], ShuffleMixer [7],
and EDiffSR [10]. The methods we have chosen for these
comparisons are representative of the mainstream methods in
the field. We retrained these comparison methods on the same
training set according to the official experimental details.

1) Quantitative Comparison: Table I provides the results
of the quantitative comparison of FID and LPIPS on the AID
dataset. We compute metrics for different types of scenarios
and give average results for each method on the dataset. The
results show that our proposed DRGAN obtains the best scores

in both metrics. It is worth noting that achieving perfect
reconstruction results is still a challenging task due to the
complexity and variability of scenes in remote sensing images.
Specifically, DRGAN has an average advantage of 3.31 over
the second-best method (ESRGAN) in terms of FID. In terms
of LPIPS, DRGAN has a significant reduction compared to
other methods. The results show that the DRGAN algorithm
can provide stable detail retrieval under different remote sens-
ing scenarios, demonstrating good generative performance.

We downsampled images from the WHU-RS19 dataset at
three different sizes of Gaussian fuzzy kernels (0.6, 1.2, and
1.8) and then tested the reconstruction performance of each
model. We assess the PSNR values for the WHU-RS19 dataset
in more detail in Table II. The table shows that our DRGAN
achieves the next best value of the PSNR. ShuffleMixer
achieves a high PSNR but the visual perception of the image
falls short of expectations by minimizing L1 and frequency
losses.

Moreover, Table III displays the LPIPS averages for the
WHU-RS19 dataset. We observe that our DRGAN achieves
the best LPIPS performance with degenerate cores of different
sizes. For example, compared with EDiffSR, DRGAN reduces
24.01%, 21.39%, and 12.02% for Gaussian kernels of 0.6, 1.2,
and 1.8, respectively. This demonstrates the strong generaliza-
tion ability of our method on different degenerate kernels.

2) Qualitative Comparison: To better visualize the compar-
ative results of the different models, the reconstruction results
of the various methods for the four scenarios are shown in
Fig. 5. We process images from the AID dataset uniformly
using bicubic degradation and then input them into individual
models for reconstruction. From the figure, we can see that our
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Fig. 7. Visual comparison with the SOTA SR model on the WHU-RS19 test set with a degeneracy kernel of 1.2. Local zoom better demonstrates image
details.

Fig. 8. Visual comparison with the SOTA SR model on the WHU-RS19 test set with a degeneracy kernel of 1.8. Local zoom better demonstrates image
details.

DRGAN can consistently produce realistic results that outper-
form the SOTA methods. For the baseball_field151, the results
produced by Beby-GAN are severely distorted, highlighting
the limitations in preserving fine knots and clarity. In contrast,
DRGAN provides a more natural effect. In playground_184,

ESRGAN and ShuffleMixer can provide relatively realistic
distributions. But there are still some transition smoothing
issues that blur the details. In contrast, DRGAN can accu-
rately generate details and present a more natural perception.
These results highlight the generative power of OSRRDBNet,
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TABLE IV
QUANTITATIVE COMPARISON WITH THE SOTA SR MODEL FOR NIQE AND AG. THE BEST VALUES IN EACH CATEGORY ARE

HIGHLIGHTED IN RED, AND THE SECOND-BEST VALUES ARE HIGHLIGHTED IN BLUE

Fig. 9. 4 × visual comparison with the SOTA SR model on the NWPU-RESISC45 test set.

enabling DRGAN to recover details that are consistent with
the genuine distribution.

Fig. 6 provides a closer examination of several illustrations
from the WHU-RS19 effect dataset employing a fuzzy kernel
of 0.6. It can be seen from the figure that SRGAN, ESRGAN,
and EDiffSR cannot handle LR images with blurring well
and even amplify the negative effects of blurring. The bicubic
method is plagued by severe checkerboard grid artifacts in
the reconstructed images. Our method produces crisp edges
and more similar colors. In the red box, only our method can
restore the full details of the closest actual situation.

In Fig. 7, we visualize the SR results when the fuzzy kernel
is 1.2. As shown in the figure, ESRGAN visualization is
slightly better than other methods. However, the texture of
the hull section in bridge_04 is still unclear, and the details in
forest_01 are too smooth. Our method not only restores the
details of the image but also successfully removes the artifacts.

Fig. 8 illustrates the visual effect when the blur kernel
is 1.8. The image parking_05 contains a dense distribution
of multiscale vehicles, and our DRGAN can distinguish the
vehicles better, while other methods suffer from the defect
of multitarget fusion. In railwayStation_05, our method fully
considers the library edge distribution with less distortion.

3) Real-World Comparison: We also evaluate the perfor-
mance of our DRGAN on real-world remote sensing images.
Table IV demonstrates the quantitative comparison between
DRGAN and SOTA methods regarding NIQE and AG. From
the table, we can see that our DRGAN achieved the best NIQE.
It demonstrates the ability of our method to recover images
that are consistent with human perception.

TABLE V
ABLATION ANALYSIS OF DIFFERENT MODULES. THE BEST

VALUES ARE HIGHLIGHTED IN RED

The quantitative results for the NWPU-RESISC45 are por-
trayed in Fig. 9. Beby-GAN provides considerable blurring
when compared to other methodologies. BSRGAN results in
an excessively sharpened effect. Conversely, our methodology
recaptures high-frequency texture intricacies and minimizes
blurring and artifacts.

E. Ablation Studies

1) Comparison of RRDB and OSRRDB: Our study com-
pares the performance of RRDB and OSRRDB. According
to the data in Table V, OSRRDB improves the PSNR by
0.07 compared to RRDB. In addition, OSRRDB outperformed
RRDB by approximately 1.98% and 3.24% on the LPIPS and
NIQE assessment metrics, respectively. These results indicate
that OSRRDB performs superior in image reconstruction capa-
bility and visual quality assessment, showing its potential and
effectiveness in image processing tasks.

2) Comparison of Pooling Layers: To explore the effective-
ness of the average pooling layer, we compare the performance
of the average pooling layer with the maximum pooling
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layer in detail. As shown in Table V, the average pooling
layer improves by 0.59 in terms of the PSNR and 2.26%
in terms of SSIM compared to the maximum pooling layer.
In addition, the LPIPS score was also 2.22% higher than the
maximum pooling layer, while the NIQE score improved by
20.12%. These results clearly show the significant advantages
of average pooling layers in image processing. It not only
maintains image quality better but also performs better in
terms of detail retention and visual perception.

V. CONCLUSION

In this article, we design a DRGAN SR reconstruction
model, aiming to generate SR results that conform to human
eye perception. To recover remote sensing image details to
a greater extent, we design an OSRRDBNet that deeply
extracts and reconstructs input features to enhance the detailed
information and image quality. Extensive testing on remote
sensing datasets subjected to various degradations shows that
our DRGAN outperforms current SOTA methods.

Nevertheless, our DRGAN model does have certain draw-
backs. First, the training process of GAN models is computa-
tionally expensive, hindering real-time performance. Besides,
DRGAN may still suffer from the problem of detail loss in
practical applications, especially in complex multidegradation
scenarios. Therefore, these challenges should be gradually
addressed in the future by optimizing the algorithm and
improving the training strategy to enhance the performance
and usefulness of the model.

REFERENCES

[1] Y. Xiao, Q. Yuan, K. Jiang, J. He, Y. Wang, and L. Zhang, “From degrade
to upgrade: Learning a self-supervised degradation guided adaptive
network for blind remote sensing image super-resolution,” Inf. Fusion,
vol. 96, pp. 297–311, Aug. 2023.

[2] K. Chen et al., “Continuous remote sensing image super-resolution based
on context interaction in implicit function space,” IEEE Trans. Geosci.
Remote Sens., vol. 61, 2023, Art. no. 4702216.

[3] Y. Wang, W. Liu, W. Sun, X. Meng, G. Yang, and K. Ren, “A progressive
feature enhancement deep network for large-scale remote sensing image
superresolution,” IEEE Trans. Geosci. Remote Sens., vol. 61, 2023,
Art. no. 5619413.

[4] R. Neyns and F. Canters, “Mapping of urban vegetation with high-
resolution remote sensing: A review,” Remote Sens., vol. 14, no. 4,
p. 1031, Feb. 2022.

[5] J. Li et al., “Deep learning in multimodal remote sensing data fusion:
A comprehensive review,” Int. J. Appl. Earth Observ. Geoinf., vol. 112,
Aug. 2022, Art. no. 102926.

[6] Y. Wu, Z. Li, B. Zhao, Y. Song, and B. Zhang, “Transfer learning
of spatial features from high-resolution RGB images for large-scale
and robust hyperspectral remote sensing target detection,” IEEE Trans.
Geosci. Remote Sens., vol. 62, 2024, Art. no. 5505732.

[7] L. Sun, J. Pan, and J. Tang, “ShuffleMixer: An efficient ConvNet for
image super-resolution,” in Proc. Adv. Neural Inf. Process. Syst., vol. 35,
Jan. 2022, pp. 17314–17326.

[8] Y. Xiao, Q. Yuan, K. Jiang, J. He, C.-W. Lin, and L. Zhang, “TTST:
A top-k token selective transformer for remote sensing image super-
resolution,” IEEE Trans. Image Process., vol. 33, pp. 738–752, 2024.

[9] M. Ibrahim, R. Benavente, D. Ponsa, and F. Lumbreras, “SWViT-RRDB:
Shifted window vision transformer integrating residual in residual dense
block for remote sensing super-resolution,” in Proc. 19th Int. Joint
Conf. Comput. Vis., Imag. Comput. Graph. Theory Appl., Jan. 2024,
pp. 575–582.

[10] Y. Xiao, Q. Yuan, K. Jiang, J. He, X. Jin, and L. Zhang, “EDiffSR:
An efficient diffusion probabilistic model for remote sensing image
super-resolution,” IEEE Trans. Geosci. Remote Sens., vol. 62, 2024,
Art. no. 5601514.

[11] S. Lei and Z. Shi, “Hybrid-scale self-similarity exploitation for remote
sensing image super-resolution,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, pp. 1–10, 2021.

[12] G. Wu, J. Jiang, K. Jiang, and X. Liu, “Fully 1×1 convolutional network
for lightweight image super-resolution,” Mach. Intell. Res., vol. 21,
pp. 1–15, 2024.

[13] H. Li et al., “SRDiff: Single image super-resolution with diffusion
probabilistic models,” Neurocomputing, vol. 479, pp. 47–59, Mar. 2022.

[14] B. Xia et al., “DiffIR: Efficient diffusion model for image restora-
tion,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2023,
pp. 13095–13105.

[15] J. He, Q. Yuan, J. Li, Y. Xiao, X. Liu, and Y. Zou, “DsTer: A dense
spectral transformer for remote sensing spectral super-resolution,” Int.
J. Appl. Earth Observ. Geoinf., vol. 109, May 2022, Art. no. 102773.

[16] Z. Wang, X. Cun, J. Bao, W. Zhou, J. Liu, and H. Li, “Uformer:
A general U-shaped transformer for image restoration,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 17683–17693.

[17] X. Wang, L. Sun, A. Chehri, and Y. Song, “A review of GAN-
based super-resolution reconstruction for optical remote sensing images,”
Remote Sens., vol. 15, no. 20, p. 5062, Oct. 2023.

[18] C. Ledig et al., “Photo-realistic single image super-resolution using
a generative adversarial network,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4681–4690.

[19] X. Wang et al., “ESRGAN: Enhanced super-resolution generative adver-
sarial networks,” in Proc. Eur. Conf. Comput. Vis. (ECCV) Workshops,
Jan. 2019, pp. 63–79.

[20] K. Zhang, J. Liang, L. Van Gool, and R. Timofte, “Designing a practical
degradation model for deep blind image super-resolution,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 4791–4800.

[21] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295–307, Feb. 2015.

[22] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 1646–1654.

[23] J. Yu, Y. Fan, and T. S. Huang, “Wide activation for efficient image and
video super-resolution,” in Proc. 30th Brit. Mach. Vis. Conf. (BMVC),
Jan. 2019, p. 189.

[24] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-
resolution using very deep residual channel attention networks,” in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 286–301.

[25] J. Liang, H. Zeng, and L. Zhang, “Efficient and degradation-adaptive
network for real-world image super-resolution,” in Proc. Eur. Conf.
Comput. Vis., 2022, pp. 574–591.

[26] H. Zhang, C. Zhang, F. Xie, and Z. Jiang, “A closed-loop network for
single infrared remote sensing image super-resolution in real world,”
Remote Sens., vol. 15, no. 4, p. 882, Feb. 2023.

[27] H. Zhang, P. Wang, and Z. Jiang, “Nonpairwise-trained cycle convolu-
tional neural network for single remote sensing image super-resolution,”
IEEE Trans. Geosci. Remote Sens., vol. 59, no. 5, pp. 4250–4261,
May 2021.

[28] H. Zhou et al., “Learning correction filter via degradation-adaptive
regression for blind single image super-resolution,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2023, pp. 12331–12341.

[29] S. Lei, Z. Shi, and W. Mo, “Transformer-based multistage enhancement
for remote sensing image super-resolution,” IEEE Trans. Geosci. Remote
Sens., vol. 60, pp. 1–11, 2021.

[30] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte,
“SwinIR: Image restoration using Swin transformer,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. Workshops (ICCVW), Oct. 2021, pp. 1833–1844.

[31] Z. Luo, F. K. Gustafsson, Z. Zhao, J. Sjölund, and T. B. Schön, “Image
restoration with mean-reverting stochastic differential equations,” 2023,
arXiv:2301.11699.

[32] Z. Yue, J. Wang, and C. C. Loy, “ResShift: Efficient diffusion model for
image super-resolution by residual shifting,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 36, 2024, pp. 13294–13307.

[33] W. Li, K. Zhou, L. Qi, L. Lu, and J. Lu, “Best-buddy GANs for highly
detailed image super-resolution,” in Proc. AAAI Conf. Artif. Intell., 2022,
vol. 36, no. 2, pp. 1412–1420.

[34] R. Dong, L. Zhang, and H. Fu, “RRSGAN: Reference-based super-
resolution for remote sensing image,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2022, Art. no. 5601117.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on February 20,2025 at 06:58:13 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: DRGAN: A DETAIL RECOVERY-BASED MODEL 5602113

[35] B. Li et al., “SeD: Semantic-aware discriminator for image super-
resolution,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2024, pp. 25784–25795.

[36] M. Y. Yang, W. Liao, X. Li, Y. Cao, and B. Rosenhahn, “Vehicle
detection in aerial images,” Photogramm. Eng. Remote Sens., vol. 85,
no. 4, pp. 297–304, Apr. 2019.

[37] K. Liu and G. Mattyus, “Fast multiclass vehicle detection on aerial
images,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 9, pp. 1938–1942,
Sep. 2015.

[38] W. Huang, Q. Wang, and X. Li, “Feature sparsity in convolutional neural
networks for scene classification of remote sensing image,” in Proc.
IEEE Int. Geosci. Remote Sens. Symp., Jul. 2019, pp. 3017–3020.

[39] G. Cheng, J. Han, and X. Lu, “Remote sensing image scene classifi-
cation: Benchmark and state of the art,” Proc. IEEE, vol. 105, no. 10,
pp. 1865–1883, Oct. 2017.

[40] W. Zhou, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, pp. 600–612, 2004.

[41] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang,
“The unreasonable effectiveness of deep features as a perceptual metric,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 586–595.

[42] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“GANs trained by a two time-scale update rule converge to a local Nash
equilibrium,” in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017,
pp. 6626–6637.

[43] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ‘completely
blind’ image quality analyzer,” IEEE Signal Process. Lett., vol. 20, no. 3,
pp. 209–212, Apr. 2012.

Yongchao Song was born in Weihai, Shandong,
China, in 1990. He received the B.S. and Ph.D.
degrees from the School of Electronic and Control
Engineering, Chang’an University, Xi’an, China, in
2015 and 2020, respectively.

He is currently an Associate Professor with the
School of Computer and Control Engineering, Yan-
tai University, Yantai, China. His research interests
include remote sensing information processing and
deep learning.

Lijun Sun was born in Yantai, Shandong, China,
in 2001. She received the B.S. degree from the
School of Computer and Control Engineering, Yantai
University, Yantai, China, in 2023, where she is
currently pursuing the master’s degree.

Her research interests include deep learning,
remote sensing image super-resolution, and artificial
intelligence.

Jiping Bi was born in Weifang, Shandong, China,
in 2001. He received the B.S. degree from the School
of Computer and Control Engineering, Yantai Uni-
versity, Yantai, China, in 2023, where he is currently
pursuing the master’s degree.

His research interests include image processing,
traffic target detection, and automatic control.

Siwen Quan received the B.S. degree from
Chang’an University, Xi’an, China, in 2015, and the
Ph.D. degree from Huazhong University of Science
and Technology, Wuhan, China, in 2019.

She is an Associate Professor with the School
of Electronics and Control Engineering, Chang’an
University. Her research interests include local geo-
metric shape description, 3-D object recognition, and
image fusion.

Xuan Wang (Senior Member, IEEE) was as born
in Weihai, Shandong, China, in 1991. She received
the B.S. and Ph.D. degrees from Traffic Informa-
tion Engineering and Control, Chang’an University,
Xi’an, China, in 2013 and 2018, respectively.

She is currently an Associate Professor with the
School of Computer Science and Control Engineer-
ing, Yantai University, Yantai, China. Her research
interests include intelligent traffic control, artificial
intelligence, and computer vision.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on February 20,2025 at 06:58:13 UTC from IEEE Xplore.  Restrictions apply. 


