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Abstract— Lane detection is crucial for autonomous driving
systems (ADS), utilizing sensors like cameras and LiDAR to
identify lanes and understand vehicle position, direction, and
lane shape. It provides data support for the control system to
make informed driving decisions. In this survey, we review recent
advancements in lane detection, focusing on both 2D techniques
and emerging 3D methods. We begin with an overview of the
significance of lane detection in ADS, followed by an analysis
of the evolution of 2D techniques over the past decade, covering
traditional and deep learning approaches. We also examine recent
advancements in 3D lane detection. Additionally, we summarize
evaluation metrics and popular datasets in the field. Finally,
we discuss current challenges and future directions in lane
detection, aiming to provide valuable insights for researchers
and developers in this technology.

Index Terms— Computer vision, 2D lane detection, 3D lane
detection, autonomous driving.

I. INTRODUCTION

ACCORDING to the recently published Global Status
Report on Road Safety 2023 by the World Health Orga-

nization [1], the number of deaths resulting from road traffic
accidents reaches 1.19 million per year. In most traffic acci-
dents, human errors are often the primary cause, such as driver
fatigue, drunk driving, excessive speed, and inattentive driv-
ing. However, with the exponential growth of computer and
information technology, autonomous driving technology has
emerged as a game-changing [2], efficient method to signifi-
cantly reduce the frequency of traffic accidents. Autonomous
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Fig. 1. Diagram of the autonomous driving system with sensing, control,
and execution layers. It illustrates that perception is essential; only through
accurate environmental sensing can the controller make informed decisions.

vehicles are equipped with state-of-the-art sensors, which
enable them to monitor their surroundings in real-time [3].
Subsequently, the vehicles utilize advanced control algorithms
to make precise decisions aimed at avoiding traffic accidents.
The successful realization of the above functions requires three
essential layers: the sensing layer, control layer, and execution
layer [4]. The primary function of the sensing layer is to gather
data using a variety of onboard sensors, including cameras
and LiDAR, which allows the vehicle to recognize its current
state and fluctuations in the surrounding environment. This
information is then delivered in real time to the control unit.
The control layer processes and analyses the data obtained
from the sensors, subsequently transmitting appropriate control
signals to the target devices. Finally, after receiving com-
mands from the control center, the execution layer permits
the vehicle to perform the appropriate actions as illustrated
in Fig. 1.

Autonomous driving technology can be classified as L0 to
L5 [5], which encapsulates the full spectrum of driving from
purely human operation to fully automated driving. The major-
ity of vehicle companies have successfully reached the L2
level of autonomous driving, and a select few have surpassed
that, achieving the L3 level of autonomy [6]. The current
generation of vehicles incorporates advanced and highly
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intelligent systems, enabling them to function autonomously
without human interference. A prerequisite for this technology
is environmental perception [7], i.e., the ability of the vehicle
to accurately recognize and understand its surroundings to
make appropriate driving decisions. Environmental perception
technology utilizes a wide range of sensors, including LiDAR,
cameras, and so on. The sensors can swiftly and accurately
detect real-time road conditions, traffic, surrounding vehicles,
and obstacles. To accurately perceive the road conditions, the
vehicle makes driving decisions by analyzing and processing
the collected data [8]. Lane detection is a crucial aspect of
autonomous driving and environmental perception, analogous
to the sensor acquisition in the Internet of Things (IoT) [9].
It allows vehicles to navigate the correct path by identifying
and tracking lanes on roads using sensors like cameras [10].

Lanes are prevalent traffic signs in the road scenario,
making their detection imperative for vehicle positioning and
navigation. It is unique due to their diversity and can be
difficult to detect under potential environmental disturbances,
thus necessitating a high degree of accuracy and robustness.
Lane detection technology is required to effectively handle
a multitude of lane variations, including various categories,
colors, and continuity, while also being adaptable to a wide
array of environmental factors such as shadows, occlusion,
wear and tear, weather changes, and lighting conditions to
guarantee precise vehicle positioning and reliable navigation.
Lane detection plays an integral role in various aspects of
vehicle driving systems, including lane departure warning
(LDW), lane keeping assist (LKA), lane change assist (LCA),
forward collision warning (FCW), adaptive cruise control
(ACC), blind spot detection (BSD), and so on [11].

Lane detection techniques can be categorized into 2D and
3D detection methods depending on the detection dimen-
sions. Academic and industrial communities have long been
committed to 2D plane lane detection, and the outcomes
have remarkable results. These innovative methods encompass
traditional computer vision [12], deep learning [13], and
multi-sensor fusion [14]. However, the detected lanes have
only two-dimensional position information, and they require
stringent conditions for practical application. To address these
issues, there has been a shift in research focus towards
developing 3D lane detection technology [15], [16], [17].
This technology is capable of providing direct detection of
lane positions within 3D space, providing more precise 3D
lane coordinate information for driverless and assisted driving
systems. The precise localization capability contributes signif-
icantly to the precise identification of the vehicle’s location on
the road, hence enabling more precise driving path planning
and vehicle control.

The contributions of this paper are as follows:
• We describe the position of lane detection in automated

driving and the related status quo.
• We comprehensively review the state-of-the-art lane

detection methods of the last decade, elucidating trends
in traditional, 2D, and 3D methods.

• This paper highlights and provides a detailed analysis
of several popular datasets and the efficiency of lane
detection methods applied to them.

• Systematic description of lane detection positioning, cur-
rent challenges, and future possible directions, with the
aim that this will facilitate the community to move further
along the journey of automated driving and lane detection.

To the best of our knowledge, the paper is the first compre-
hensive review of lane detection methods developed in the last
decade. The remaining investigations are organized as follows.
Section II describes the actual development of autonomous
driving and the technical difficulties of the lane detection task.
Section III summarizes the 2D lane detection methods of the
last decade. Section IV reviews the recent years of 3D lane
detection methods. Section V presents the existing dataset,
evaluation metrics, and assessment of existing open-source
lane detection methods. Subsequently, section VI conclude
with a summary of the current challenges and possible direc-
tions for the future. Finally, Section VII concludes the paper.
The structural framework of this paper is shown in Fig. 2.

II. BACKGROUND

The field of autonomous driving technology has been exten-
sively explored and developed since the 1970s in various
developed nations including the United States, United King-
dom, and Germany. The development of the Driver Assistance
System (DAS) in the 1980s marked the emergence of a
strategy designed to diminish driver error and boost road
safety. The advanced technology is designed to identify and
alert drivers to blind spots, thereby creating a more thorough
and safe driving experience. The Advanced Driver Assistance
System (ADAS) is an advanced version of the original system
and its subsequent iterations are based on this foundation [18].
In 2004, the Defense Advanced Research Projects Agency
(DARPA) initiated the Autonomous Driving Challenge in the
Mojave Desert, thereby catalyzing the technological revolution
in autonomous driving [19]. In 2011, the Hong Qi HQ3 vehi-
cle, a joint development of China FAW Group and the National
University of Defense Technology (NUDT) conducted a high-
speed unmanned driving experiment, covering a remarkable
distance of 886 kilometers. In 2014, Google developed a fully
autonomous driving vehicle, capable of operating without any
human input or supervision. In October 2016, the ceremony
of BAIC’s autonomous driving and project operation was held
in Panjin, Liaoning Province. Since December 2017, four
“Alpha” intelligent buses with autonomous driving capabil-
ities have been operating in designated areas of Shenzhen.
In February 2018, BYD’s fleet of autonomous vehicles, oper-
ating on Baidu’s Apollo system, accomplished a successful
crossing of the Hong Kong-Zhuhai-Macao Bridge in an orga-
nized formation. In 2020, Tesla launched a new feature,
known as Full Self-Driving (FSD), on top of the pre-existing
Autopilot feature. At IoT Expo 2021, Audi demonstrated
its advanced V2X (vehicle-to-extraterrestrial) L4 autonomous
driving technology on a public road, highlighting its feasibility
and future applications. In 2023, the self-driving company
Zoox, a subsidiary of Amazon, conducted a successful test
of its Robotaxi technology on public roads in Las Vegas.
In February 2024, Baidu’s Apollo Go vehicle crossed the
Yangsigang Yangtze River Bridge and Baishazhou Bridge,
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Fig. 2. Structural framework of this paper.

completing the journey without any driver input. As shown
in Fig. 3.

Lane detection is the foundation of ADS, and with the
gradual maturation of ADS, lane detection is also evolving.
As the name implies, lane detection is designed to precisely
determine the position, orientation, and shape of the lane
lines. In reality, lane visibility is significantly influenced by
numerous factors such as shadows cast by trees and buildings
lining the roadsides, occlusions created by vehicles and pedes-
trians, and various weather conditions like rain, snow, dust, and
intense sunlight. As shown in Fig. 4. Therefore lane detection

must be robust and keep lane identification even in complex
road conditions, different lighting conditions, or encountering
occlusions [20].

In the past, when large lane line detection datasets were
not available, lane detection relied heavily on manual feature-
based methods, which were only capable of achieving the
desired performance when lane lines were visible [21]. With
the changing and increasingly complex road conditions, man-
ual methods of detection are no longer sufficient due to their
inherent limitations and inconsistencies. As opposed to these
methods, deep learning methods are capable of automatically
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Fig. 3. Practical developments in autonomous driving application technology.

Fig. 4. Various factors affecting lane visibility in real-world environments.

extracting features that align with those required for lane
detection. Consequently, they are equipped to yield improved
detection results under conditions such as occlusion or missing
lane and so on [13]. As shown in Fig. 5, the evolution of lane
detection methods is demonstrated. Relevant research results
have emerged over time, reflecting the continuous development
and widespread interest in this field.

III. OVERVIEW OF 2D LANE DETECTION

The development of 2D lane detection technology plays a
pivotal role in the deployment of autonomous and assisted

driving systems. Researchers have worked tirelessly to contin-
uously enhance the performance of 2D lane detection. The
current methods for lane detection can be categorized as
traditional image detection methods [22] and deep learning
methods [13].

A. Traditional Image Detection Methods

The traditional lane detection process can be described as
follows: In the first stage, an image of the front of the vehicle
is captured by utilizing a camera or other suitable sensor.
The acquired image undergoes a series of pre-processing
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Fig. 5. The different mainstream methods in the field of lane detection in recent years. In the upper part of the axes 2D and the lower part 3D. Each
dimension is subdivided into several types, which are labeled in the lower left corner of the figure.

Fig. 6. The general procedure involved in traditional lane detection methods.

operations prior to subsequent processing. These operations
include image noise reduction, color space conversion, and
image enhancement, with the aim of enhancing its effective-
ness and accuracy. Next, the preprocessed image is used to
extract feature information about lane, focusing on charac-
teristics such as color and edge information. The extracted
features from the image should undergo further processing
to enhance lane visibility, such as binarization, filtering, and
edge detection. The common filtering methods are the mean
filter [23], median filter [24], bilateral filter [25], and Gaussian
filter [26]. Sobel algorithm [27] and Canny algorithm [28] are
the most prevalent edge detection techniques. Utilizing the
lane model (e.g., straight or curved line) and the extracted
features, a specific algorithm (e.g., Hough Transform or Least
Squares) is employed to accurately estimate the parameters
of the lane, thereby obtaining the precise location and shape
of the lane [29]. Finally, the detected lanes are visually
represented on the image to aid the driver’s visual perception
and decision-making process. Refer to Fig. 6 for a visual
representation of this process.

Furthermore, as the research continued, traditional lane
detection methods were overhauled and innovated based on
their original concepts. Like Fig. 7, Dorj et al. [30] proposed
a Kalman filter-based algorithm for hypersurface lane detec-
tion. The method first transforms the image into a top view
with Otsu thresholding [31]. Then, the curved lanes can be
efficiently detected by parabolic [32] and circular models [33].

Traditional image processing methods have several limita-
tions in lane line detection, including reliance on complex
preprocessing and strong a priori assumptions, leading to poor
algorithm portability. Hand-designed features (e.g., colors,
edges, or textures) have limited expressiveness, are susceptible
to scene noise, and are less robust to environmental changes,
often leading to misjudgments and omissions. However, tradi-
tional methods have not been eliminated; they have played

Fig. 7. Flowchart of lane detection algorithm using Kalman filter [30].

a significant role in the development of automobiles over
the past few decades. Currently, traditional techniques remain
effective in certain situations, particularly in environments with
good lighting or simple road structures. For instance, classical
approaches like the Hough transform continue to deliver
reliable results in scenarios with clear features. Addition-
ally, traditional methods offer high real-time performance in
embedded systems due to their low computational complexity,
one of their key advantages.

With the rapid advancement of autonomous driving technol-
ogy, the integration of deep learning has enhanced systems’
ability to adapt to complex environments and improve accu-
racy. Deep learning methods overcome the limitations of
traditional post-processing methods by automatically learning
complex features, allowing detection to adapt to more complex
scenarios. Future lane line detection techniques are likely
to lean more heavily on deep learning, but leveraging the
strengths of traditional methods remains a viable strategy,
especially in contexts where real-time performance and com-
putational resources are constrained.

B. Deep Learning Methods

Deep learning methods, such as Convolutional Neural Net-
works (CNNs), offer a more efficient and accurate solution to
the lane detection problem, offering several advantages over
traditional methods. CNNs excel in handling complex image
variations and adapting to different road environments and lane
types [34]. The multilayer network structure captures high-
level abstract features in the image, leading to superior lane
detection accuracy compared to traditional methods. More-
over, deep learning models allow for end-to-end processing
from raw images to lane detection results, reducing the need
for cumbersome intermediate steps and increasing processing
speed. The model is also resistant to noise and interference,
making it ideal for real-time applications. Additionally, deep
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Fig. 8. VPGNet [50] framework structure. It can perform four tasks: lattice
regression, object detection, multi-label classification and vanishing point
prediction.

learning models can process large-scale datasets and inte-
grate them with other models to enhance the functionality
of autonomous driving systems. Based on the representation
of lane lines, deep learning methods can be categorized
into the following four classes: segmentation-based methods,
detection-based methods, keypoint-based methods, parametric
regression based methods.

1) Segmentation-Based Methods: Lane detection using
semantic segmentation allows accurate identification of lane
and non-lane areas by classifying each pixel in the image. The
process begins by extracting features from a monocular image
to obtain key features and initial lane segmentation results.
These results are then refined by a back-end optimization
network to generate more accurate lane features. This network
classifies each pixel in the image as a lane or non-lane by
generating probabilities. Finally, detection results and lane
coordinates are generated based on these probability values.

By using pixel-level classification to separate lanes from
the background, FCN [51] achieves end-to-end semantic seg-
mentation at the pixel level. It enables the computation of the
classification loss between related pixels during backpropaga-
tion. U-Net [44], [52] is a neural network architecture using
an encoder-decoder structure and upsampling paths for lane
segmentation. This method uses channel dimension features to
form thicker features for capturing complex lane boundaries.
In addition, it maintains feature correlations with minimal
training data to maintain accuracy. ENet [53] improves
efficiency and accuracy through multi-resolution paths and
hopping connections, delivering efficient and accurate lane
detection and segmentation in real time. DeepLab [54] lane
detection and segmentation accuracy are achieved by the use
of null convolution techniques and multi-scale information
fusion. As the technology advances, it incorporates CRF and
encoder-decoder designs to provide extremely high-resolution
images. VPGNet [50] provides a structural guidance mech-
anism for marking detection by predicting extinction point
locations. This model has a multi-task learning framework that
can perform predictions not only at the pixel level for lane
segmentation, but also at the frame level for detection, at the
target level for masks, at the label level for multi-category, and

Fig. 9. LaneNet detection system [35]. It has a segmentation and embedding
branch. The segmentation branch makes binary lane masks, and the embedding
branch clusters and assigns lane pixels to cluster centers with lane IDs. The
system first processes an input image to get a lane instance mapping, which is
then used to learn perspective transformations. Polynomial fitting then projects
the lanes back onto the image.

at the location level for extinction points. As shown in Fig. 8.
EDANet [55] can skillfully extract the unique characteristics
of each layer and summarize the multi-scale information,
thereby significantly enhancing the accuracy of lane marking
segmentation. In different scenarios, these methods possess
unique strengths and limitations, which should be selected and
optimized meticulously according to specific requirements.

A brief overview of some of the currently available 2D lane
detection methods on segmentation is given in Tab. I, with
details given successively later in the paper.

Several new methods have been introduced recently,
extending the traditional semantic segmentation techniques
mentioned previously. For example, LaneNet [35] architecture
utilizes an end-to-end design concept, leveraging a two-
branch neural network. This design allows for the successful
detection of lane and the execution of pixel-level semantic
segmentation with a single forward propagation. As shown in
Fig. 9. To efficiently mine the spatial relationships of row
and column pixels of linear targets, SCNN [36] proposes
a special convolutional approach, shown in Fig. 10. This
method extends the traditional deep layer-by-layer convolution
to a more comprehensive slice-by-slice convolution in feature
mapping. By permitting the information to be aggregated in
different dimensions through slices, this strategy ultimately
enables the interconnection of pixels within rows and columns
of the layer. Wang et al. [56] propose a novel multitask method
for lane marking detection that combines CNN-based semantic
modeling with handcrafted features for improved localization
and introduces a vanishing line prediction for better accuracy
in sharp curves and nonflat roads.

RESA [37] expands upon the SCNN model by utiliz-
ing the Recursive Feature Shift Aggregator (RESA), which
enables feature map slices to continuously shift both verti-
cally and horizontally to collect spatial information between
pixels, particularly in regions spanning rows and columns.
As shown in Fig. 11. Similarly, PSSNet [38] proposes an
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TABLE I
AN OVERVIEW OF SOME TYPICAL 2D LANE DETECTION METHODS ON SEGMENTATION, INCLUDING THE OFFICIAL PUBLICATION DATE,

PUBLISHING ORGANIZATION, ADVANTAGES OF THE METHOD, NETWORK ARCHITECTURE, AND
OPEN-SOURCE STATUS OF THE PROGRAM. * DENOTES PREPUBLICATION

Fig. 10. (a) MRF/CRF-based methods. (b) Spatial CNN [36] realization.
Compared to MRF/CRF, SCNN can be applied to the top hidden layer with
richer information.

innovative approach called Parallel Space Separation Con-
volution (PSS-Conv). This method effectively leverages the
decomposition of parallel space convolution and merges
channel-weighted features for more efficient feature aggre-
gation. LaneAF [39] combines the Affinity Field [57] with
traditional binary semantic segmentation, achieving the seg-
mentation of an arbitrary number of lane instances via
clustering.

Fig. 11. RESA [37] Architecture Design. It composed by encoder, RESA
and decoder. ‘Dk’, ‘Uk’, ‘Lk’, ‘Rk’ denotes “up-to-down”, “down-to-up”,
“right-to-left”, and “left-to-right” respectively at k-thiteration in RESA.

In the YOLO family, YOLOP [47] performs simultaneous
traffic target detection, drivable area segmentation, and lane
detection with one encoder for feature extraction and three
decoders for specific tasks. Q-YOLOP [48] employs an Effi-
cient Layer Aggregation Network (ELAN) as its backbone and
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Fig. 12. AtrousFormer [41] architecture overview. In this, the raw image
is sequentially passed through Local Augmentation Enhanced Extractor, 1 ×

1 Convolution, Global AtrousFormer, and Local Semantic Guided Decoder,
and finally the segmentation map and corresponding classification scores are
generated.

task-specific headers for each task to enable lane segmentation.
A-YOLOM [49] introduces an adaptive module specifically for
segmentation Neck that can efficiently handle multiple tasks
using one model. It eliminates the need for different designs
for different scenario tasks and realizes lane segmentation with
high accuracy.

Recently, due to the high-performance appeal of the Trans-
former [58], researchers have also incorporated it into lane
detection. Laneformer [40] converts the traditional trans-
former into a model that can more effectively capture lane
shapes and semantic features, thereby minimizing latency.
AtrousFormer [41] offers enhanced information-gathering
capabilities and improved computational efficiency for the
network through its dedicated first-in-first-out approach to
information gathering. It guides the decoder through local
semantics to accurately characterize the identity and shape of
the lanes. To aid this process, predictive Gaussian maps of the
starting point of each lane are employed. As shown in Fig. 12.

Furthermore, researchers have explored the potential of
Knowledge Distillation (KD) [42] or Generative Adversarial
Networks (GAN) [59] to tackle the lane detection issue.
SAD [42] proposes a novel, lightweight lane detection method
using Self-Attention Distillation, which enables the model
to extract multiple attention maps at the encoder level and
utilize the top-level attention to regulate the learning of
the bottom-level attention. As shown in Fig. 13. Through
self-learning, the model is capable of achieving significant
improvements without the need for any additional supervision
or labeling, thereby enhancing overall segmentation accuracy.
IntRA-KD [43] relies on Inter-Region Affinity Distillation to
fragment a specific road scene image into numerous distinct
regions, each of these regions is symbolized as a node within
the graph, and links between nodes are formed depending on
their similarity in feature distribution, thereby enabling the
shallow network to attain a performance comparable to the
deeper network through attentional distillation. EL-GAN [44]
employs lane line labels as additional inputs and makes use
of GAN to generate segmentation maps that are similar to
the true value labels. As shown in Fig. 14. Ripple-GAN [45]
incorporates the concepts of feature fusion, Wasserstein gen-
erative adversarial training, and multi-objective segmentation,

Fig. 13. The process of running the SAD [42] architecture. E1 ∼ E4
comprise the encoder of ENet [53], D1 and D2 comprise the decoder of
ENet. P1 is a lane prediction network. AT-gen is the attention generator.

Fig. 14. Overview of the EL-GAN architecture [44].

Fig. 15. A brief overview of the PointLaneNet method [60]. It generates
coordinates directly from the original input image.

resulting in superior performance, particularly when the lane
labeling information is incomplete. SIM-CycleGAN [46] uti-
lizes GAN to create low-light images, which enhances the
model’s adaptability to low-light environments.

2) Detection-Based Methods: Anchor-based methods gen-
erate a set of predefined anchor boxes to efficiently locate
lanes within an image. Initially, a variety of anchor frames
with different sizes and aspect ratios are created. The anchor
point algorithm then analyzes each anchor box using a neural
network model to determine if it contains a lane. Finally, the
exact location of the lane is further refined based on the anchor
points. A brief overview of some of the currently available 2D
lane detection methods on detection is given in Tab. II, with
details given successively later in the paper.

As shown in Fig. 15, PointLaneNet [60] determines the
shape of the lane and the classification of the lanes by
creating horizontal straight lines on the input image and
determining the shape of the lane and the classification of
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TABLE II
AN OVERVIEW OF SOME TYPICAL 2D LANE DETECTION METHODS ON DETECTION, INCLUDING THE OFFICIAL PUBLICATION DATE, PUBLISHING

ORGANIZATION, ADVANTAGES OF THE METHOD, NETWORK ARCHITECTURE, AND OPEN-SOURCE STATUS
OF THE PROGRAM. * DENOTES PREPUBLICATION

the lanes by finding the point at which the straight and the
lane have a unique intersection. Line-CNN [61] proposes a
novel Line Proposal Unit (LPU), LPU can locate accurate
traffic curves using line proposals as a reference, enabling
the system to learn a global feature representation of the
entire traffic route. Su et al. [77] proposed a top-down vanish-
ing point-guided anchoring mechanism for generating dense
anchors to efficiently capture various lanes. SIIC-Net [62]
introduces the concept of feature lanes, which generates a set
of candidate lanes by clustering training in the feature lane
space, and then detects road lanes among the candidate lanes.
ADNet [63] employs SPGU to generate high-quality anchors,
utilizes ALAU to improve lane line feature representation, and
utilizes General Lane IoU loss (GLIoU loss) to overcome
the shortcomings of Line IoU loss (LIoU loss). As shown
in Fig. 16. Additionally, the classical YOLO algorithm can

be applied in target detection. For example, Cui et al. [78]
proposed an advanced YOLOv3 algorithm for highway lane
detection. The algorithm involves refining Anchor parameters
with the K-means++ algorithm, extracting features with the
Darknet-53 network, and finally, using the upgraded YOLOv3-
K-101 network for feature splicing. The novel O2SFormer [64]
dynamic anchor-based positional query explores explicit posi-
tional prior, employing lane anchors as positional queries and
updating these anchors gradually, layer by layer. This strategy
enables the detector to resolve semantic conflicts of tags
while maintaining end-to-end detection, as shown in Fig. 17.
Sparse Laneformer [65] uses a sparse anchor mechanism and
no longer relies on dense anchors. That allows the model
to be more flexible and not be limited by the density and
distribution of the training dataset. It further optimizes the
lane prediction results and improves the detection accuracy
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Fig. 16. Overview of ADNet Architecture [63]. Encoder extracts and
enhances the lane context with FPN embedded with LKA. Low-level context
is transferred to SPGU for the generation of start point guided anchors and
guidance map. High-level context is aggregated through ALAU with the aid of
the auxiliary guidance map. Pooling optimises the lane lines with the General
Lane IoU loss.

Fig. 17. Structure of O2SFormer [64] pipeline. O2SFormer uses a CNN
for 2D feature representation learning and adding positional encoding. The
feature representation is passed to the Transformer Encoder where Dynamic
anchor-based positional query and content query are taken into account. The
output embedding of the Transformer decoder is used by a FFN to predict
background and foreground probabilities and lane anchor length. Labels
are assigned to lane anchors in each decoder layer using One-to-Several
assignment.

Fig. 18. Overview of Sparse Laneformer [65]. It uses a CNN backbone to
extract features from images and then feeds them into a transformer decoder
for lane predictions. The decoder includes a two-stage process: an initial stage
with attention for learning initial queries and predicting coarse lanes, and a
second stage for refining the queries and lanes to generate final predictions.

by using not only Horizontal Perception Attention (HPA)
and Lane-Angle Cross Attention (LACA) but also the Lane
Perception Attention (LPA) mechanism based on deformable
cross attention, as shown in Fig. 18.

In addition to the above methods, there exist lane detection
methods utilizing a line-by-line search, which means examin-
ing the lane pixels in each image line to identify the location

Fig. 19. A schematic for selecting on the left and right lane [66].

Fig. 20. Unmanned geographic information sensing using hybrid attention
mechanism network architecture [79]. It mainly consists three modules: fea-
ture extraction module based on mixed-attention mechanism ResNet, auxiliary
segmentation module and classification module based on row anchor.

and shape of the lane. As shown in Fig. 19. During this
process, the algorithm systematically examines each line of
the image from the beginning, processing and analyzing each
line of pixels in search of the lane’s presence and location.
Typically, certain predetermined rules, filters, or features are
applied to distinguish which pixels may be part of the lane.
Following this, the overall lane’s contour is gradually approx-
imated based on this accumulated information.

For example, UFLD [66] approaches lane detection as
a row selection problem relying on global features, which
significantly reduces computation requirements and enhances
computational speed. The lightweight version can achieve over
300 frames per second, even in challenging scenarios. The sys-
tem’s performance is further improved by incorporating a large
receiver domain for processing global features. Song et al.
[79] used a line-direction-based lane line location selection
and classification method to detect the presence of a lane at
each candidate point based on line anchors, which reduces
the high computational complexity associated with the pixel-
by-pixel segmentation of traditional semantic segmentation.
As shown in Fig. 20. E2E [67] uses a module for efficient
horizontal reduction to model each lane marker categori-
cally and obtain its vertices. CurveLane-NAS [68] introduces
Neural Architecture Search (NAS) to capture coherent and
accurate short-range curve information over long distances.
LaneATT [70] extracts features from each anchor using feature
mapping. It subsequently combines local and global features to
facilitate the use of information from other lanes for accurate
lane classification and localization from dense line anchors.
CondLaneNet [69] architecture introduces a novel top-down
lane detection framework. It first identifies lane instances
and then predicts the shape of each instance. A conditional
lane detection strategy, integrating conditional convolution and
a line-by-line formulation, is proposed to address the lane
instance-level recognition problem. UFLDv2 [71] adopts a
mixed-anchor approach (row-anchor+column-anchor), which
enhances the UFLD row-anchor and efficiently reduces the
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Fig. 21. Overview of the CLRNet framework [73]. Firstly, the network
generates feature maps from FPN structure. Subsequently, each lane prior
will be refined from high-level features to low-level features. What’s more,
each head will exploit more contextual information for lane prior features.
Finally, classification and regression of lane priors.

positioning error. However, UFLDv2 does not consider the
effect of tilt on losses. To address this issue, CANet [72]
uses a heat map form to supervise the construction of a
Gaussian distribution centered on the vector line, simulating
the modeling of positive sample features with decreasing
distance. Specifically, CANet has the capacity to choose a
row-wise or column-wise classification, including two types
of anchors, all of which are flexible and dynamic to the shape
of the instance heatmap.

Moreover, CLRNet [73] uses high-level features to identify
lanes and low-level features to adjust the position of the lane.
It employs the RoIGather module to gather global semantic
information for identification and the proposed Line IoU loss
to optimize the lane as a whole. As shown in Fig. 21. On this
basis, Honda and Uchida et al. [75] put forward a novel
representation, LaneIoU, which incorporates local lane angles
into the calculation of the lane. In addition, they created
the CLRerNet detector, which enhances the reliability of the
confidence scores by optimizing the objective assignment cost
and loss function. Chen et al. [76] propose a novel paradigm
called “Sketch-and-Refine” that integrates the strengths of both
keypoint-based and proposal-based methods. This method,
named SRLane, simplifies the lane’s local direction and makes
it more explicit. It first roughly sketches the lane’s shape using
local geometric descriptors and then refines it gradually for
lane detection.

3) Keypoint-Based Methods: The method estimates lanes
by detecting specific key points. Firstly, feature extraction is
used to identify important key points from the input image
which are invariant and can be recognized across different
images. Then, these feature points are matched with corre-
sponding points in different frames to establish inter-frame
correspondence. Finally, lanes are reconstructed based on
the matched feature points. We summarise several 2D lane
detection methods using key points, as shown in Tab. III.
Moreover, the specifics are described in the following.

Just as in Fig. 22, PINet [80] boasts triple the confidence,
offset information, and embedded features. These features
are instrumental for lane key point localization and post-
processing key point classification. The confidence and offset
information, in particular, contribute to enhancing the accuracy
of this process. Reference [81] introduces deep reinforcement
learning [82] into lane detection, combining bounding box
level convolution neural network lane detector and Deep Q-
Learning Localizer (DQLL) to improve the representation of
curved lanes [83]. FOLOLane [84] employs two branches, one

Fig. 22. PINet [80] framework structure. Three-part framework uses resizing
network to compress 512 × 256 input data, then feeds compressed data into
a predicting network with four hourglass modules for confidence, offset, and
embedding predictions. Loss is calculated from each hourglass block output,
and clipping modules can adjust resources.

of which generates a heat map for detecting whether a pixel
is a critical point, while the other branch provides offsets
for accurately adjusting the position of critical points. The
output network completes the local-to-global curve correlation
through the correlation algorithm to form multiple complete
curves. This method reduces the computational cost while
avoiding the problem of noisy and redundant information in
the Segmentation strategy. Like Fig. 23, GANet [85] utilizes
a Lane-aware Feature Aggregator (LFA) module, a feature
aggregator that integrates the global correlation of key points,
to model lanes on a full scale. This module is adept at predict-
ing offsets between key points and subsequently aggregating
the features of neighboring key points, significantly enhancing
the feature representation of the current key point. By inte-
grating local associations with global associations, GANet
substantially improves lane detection performance, offering a
more comprehensive set of features. RCLane [86] can capture
global and local position data for lanes. Specifically, it captures
the distance from each point to the two points prior and
subsequent, thereby obtaining a localized understanding of the
lane. Subsequently, it monitors the endpoints at both lane ends
to determine the lane’s overall length. LanePtrNet [87] designs
a curve-aware centrality as a key measure and proposes the C-
FPS algorithm to extract seed points. Further to generate lane
clusters, it uses a simple but effective grouping module with
cross-instance attentional voting, thus significantly reducing
duplicate grouping results.

This approach is usually robust to a certain degree of view-
point changes, illumination changes, and partial occlusions.
At the same time, due to the feature points having invariance,
this method can cope with scene changes and image noise
to some extent. In practice, the method is usually used in
conjunction with other techniques (e.g., motion estimation,
image alignment, etc.) to deal with occlusion, breaks, and high
density of lanes.

4) Parametric Curve Based Methods: The method models
the shape of the lanes and directly outputs a parametric
representation of the lanes. Firstly, feature points are identified
and extracted from the image, and then a curve-fitting model
is used to obtain lane shape parameters. Based on these
parameters, the position and shape of the lane in the image,
usually one or more curves, are obtained. Finally, the results
are post-processed to remove unreasonable curves, connect
broken parts, and smooth the curves. We summarize several
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TABLE III
AN OVERVIEW OF SOME TYPICAL 2D LANE DETECTION METHODS ON KEY POINTS AND PARAMETRIC CURVES, INCLUDING THE OFFICIAL

PUBLICATION DATE, PUBLISHING ORGANIZATION, ADVANTAGES OF THE METHOD, NETWORK ARCHITECTURE, AND OPEN-SOURCE STATUS
OF THE PROGRAM. * DENOTES PREPUBLICATION

Fig. 23. Overall architectural design of GANet [85]. CNN backbone, SA,
and FPN extract multi-scale visual features for the input image. The decoder
generates a confidence map and offset map from the key header and offset
header, respectively, and clusters key points into groups representing lane line
instances. The LFA module is applied to capture local context before keypoint
estimation.

methods of 2D lane detection using parametric curves, as listed
in Tab. III. The specific parameters for each method are
detailed below.

As shown in Fig. 24, PolyLaneNet [88] produces a
polynomial curve representing each lane in the image and
a corresponding confidence score. LSTR [89] adopts a
transformer-based network to identify the elongated structure

Fig. 24. Overview of PolyLaneNet method [88]. The left to right sequence
involves the model inputting an image from a forward-looking camera and
outputting information about each lane marking.

of lanes within a global context by exploiting non-local
interactions. Subsequently, the network parameters are directly
employed as regression outputs to reflect the road structure and
camera pose. BézierLaneNet [90] uses a deep lane detector
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Fig. 25. BézierLaneNet [90] Pipeline. (a) A feature from a typical encoder
is fortified through feature flip fusion, subsequently aggregated into 1D
feature. Following this, two 1D convolution layers are applied to refine the
extracted features. Ultimately, the network predicts Bezier curves through a
classification branch and a regression branch. (b) Feature flip fusion. Aligned
is achieved by implementing deformable convolution offsets, conditioned on
both the flipped and original feature map. This process is most effectively
observed when presented in color.

Fig. 26. Lane2Seq [91] interference pipeline. The model senses the images
and cues and generates format specific markers. Then it is transformed into
the detection format required by Segmentation, Anchor, and Parameter for
visualization.

based on Bézier curves that efficiently models the geome-
try of the lanes and uses parametric Bézier curves to deal
with the optimization difficulties of existing polynomial curve
methods. The overall model architecture is shown in Fig. 25.
Lane2Seq [91] treats lane detection as a sequence generation
task, shown in Fig. 26. It employs a simple transformer-
based coder-decoder architecture and uses multi-format model
tuning based on Reinforcement Learning (MFRL) to integrate
task-specific knowledge, thus unifying various lane detection
formats.

This approach allows different curve models to be selected
depending on the specific problem, for example, a straight-line
model may be more appropriate on a highway, whereas a more
complex curve model may be required at a curve. Parametric
curve-based lane detection methods are usually well adapted to
lane shapes in different scenarios and have some mathematical
interpretations. Despite its potential benefits, there are certain
drawbacks associated with this method. Chief among these
are its susceptibility to noise and occlusion, the sensitivity to
parameter selection, and the extensive computational require-
ments for accurate curve fitting.

Fig. 27. Multi-camera fusion method architecture for lane detection [93]. The
inputs are front/left/right-view images with front-view divided into left/right
side. The front view gets ROI setting while side-view undergoes self-vehicle
body parts cropping. After feature extraction, lane detection is done for
left/right front-/top-view images, and fusion strategy is applied.

C. Other Methods

Researchers also have used multiple cameras to acquire
images. Multiple cameras acquire road information from dif-
ferent angles and locations. Compared to single cameras,
multi-cameras can provide a more comprehensive view and
capture more complex scene features. For instance, Van et al.
[94] utilized two cameras, which were discreetly placed under
wing mirrors on each side of the vehicle to acquire images.
The system then used the EDLines algorithm in real time
to detect the line segments. Following this, lane detection
was developed by analyzing the angle of these detected line
segments. As shown in Fig. 27, Xiong et al. [93] uses a
lane detection fusion strategy. It based on vanishing point
estimation and specified feature fitting after coordinate trans-
formation using three cameras and a reference vehicle. Zhang
et al. [95] proposes a sliding window lane line detection
algorithm that combines steering wheel angle data and a
binocular camera. The algorithm has two key components:
first, it uses the previous steering wheel angle to calculate the
radius of the current curve; second, it determines the ratio
of pixel distance in the aerial view to real-world distance
in the global coordinate system. Yuan et al. [96] multi-stage
approach for ground coordinate lane detection and estimation
based on vehicle surround view camera module (SVS). Firstly,
the raw images are processed using a neural network classifier
to generate pixel-level semantic segments. Then, the semantic
data labeled lanes are projected to 2D ground coordinates and
quantified using a grid representation. Next, outliers are pro-
cessed and smoothed by spatial and temporal filters. Finally,
adaptive polynomial fitting and error statistical analysis are
applied to reveal the lane shape and self-vehicle direction
information contained in the processed semantic data.
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In addition to vision methods, LiDAR is also used for lane
detection tasks. 2D LiDAR lane detection is a technique that
uses 2D LiDAR sensors to acquire information about the
surrounding environment to identify and locate lane lines.
By emitting a laser beam and measuring its return time,
LiDAR can generate highly accurate point cloud data that
reflects the distance and shape of surrounding objects. Han
et al. [97] extracts road features as line segments in polar
coordinates relative to the LiDAR sensor. These extracted
features are then tracked about the vehicle’s local coordinates
using a nearest-neighbor filter. Wu et al. [98] identifies road
boundaries up to 65 m from the LiDAR sensor, constrained
by road geometry and the sensor’s scan range. To extend this
detection range, multiple LiDAR sensors can be placed along
the roadside, compensating for point loss at greater distances
and allowing for the detection of both road borders. Refer-
ence [99] proposed a 2D LiDAR-based road and road edge
detection method for recognizing road areas and road edges.
Reference [100] proposed a method for recognizing road
boundaries and obstacle detection using downward-looking 2D
LiDAR, which can detect drivable areas and obstacles on road
boundaries, such as curbs, bushes, traffic cones, and vehicles.
Unfortunately, it was not able to recognize lanes.

Given the limitations of 2D LiDAR alone, the researchers
decided to integrate vision and LiDAR to develop an effective
fusion strategy. Li et al. [14] presents a real-time opti-
mal drivable-region and lane detection system that integrates
LIDAR and vision data through a multisensory approach,
enabling identification of drivable areas via feature-level fusion
and an optimal selection strategy for conditional lane detection
based on automatic region classification. Caltagirone et al.
[119] presents a deep learning approach for road detection
by fusing LiDAR point clouds with camera images. Initially,
an unstructured and sparse point cloud is projected onto
the camera image plane and then upsampled to generate
a dense set of 2D images that encode spatial information.
Subsequently, multiple fully convolutional networks (FCNs)
are trained to carry out the road detection task. Yen?aydin
and Schmidt et al. [120] used 2D LiDAR to detect objects on
the road, while also utilizing camera data to generate binary
bird’s-eye view (BEV) [121] images. Subsequently, the BEV is
refined to mitigate noise and estimate the position of the object
detected by the LiDAR within the BEV, thus performing lane
detection. With the maturity of LiDAR technology, 3D LiDAR
is beginning to be widely studied in lane detection and has
achieved good results, as described in Section IV.

IV. OVERVIEW OF 3D LANE DETECTION

Since 2D lane detection methods can only be performed
on a planar viewpoint, they face the challenge of viewpoint
variations and occlusions, which often lead to false or missed
detections. Especially in complex road conditions and situ-
ations with many environmental changes, such as inclement
weather or road construction zones, these 2D detection tech-
nologies may experience performance degradation due to
external interference. To address these concerns, in recent
years researchers have proposed a variety of 3D lane detection
methods that better understand the three-dimensional spatial

Fig. 28. Workflow of a lane marking detection system using 3D LiDAR [122].

layout of lanes to improve lane detection accuracy and robust-
ness. It is possible to detect not only the position of the
lane in the horizontal direction but also to determine the
position of the lane in the vertical direction, thus obtaining
the curvature, slope, etc. of the lane. Furthermore, it also
works in conjunction with downstream tasks such as path
planning and vehicle control, which makes it compatible with
additional sensor data such as radar and cameras. In the field
of 3D lane detection, the following categories of methods have
been developed: 3D LiDAR-based methods, 3D vision-based
methods, and multi-modal fusion methods.

A brief overview of some of the currently available 3D
lane detection methods is given in Tab. IV, with details given
successively later in the paper.

A. 3D LiDAR Detection

3D Radar, especially 3D LiDAR, can provide extremely
accurate and comprehensive three-dimensional spatial data.
It can determine the position and shape of surrounding objects
by emitting laser pulses and measuring the time of the reflected
pulses and provide highly accurate lane positions independent
of lighting conditions.

Reference [123] utilizes the LiDAR intensity information to
reject the point cloud’s lane data beyond a certain threshold,
thus separating the LiDAR point cloud into asphalt and
road markings, which efficiently identifies any road mark-
ings (crosswalks, continuous lines, dashed lines). Veronese et
al. [124] combined vehicle motion models and 3D LiDAR
sensor data to create a detailed visual map. It used infrared
reflectance imagery to gain a more complete understanding
of the vehicle’s surroundings. Subsequently, the image was
processed to extract lane markers, allowing the vehicle to
accurately recognize the lane position and width. As shown in
Fig. 28, Huang et al. [122] used a 3D point cloud generated
by 16-line LiDAR to filter curb points and detect lanes on
structured roads. Subsequently, they employed the constrained
RANSAC algorithm and a curb detection method that relies
on the density of road segment points to successfully seg-
ment and refine the road data. Zeng et al. [125] proposed
a Scatter Hough algorithm for automated lane detection that
considers points in the neighborhood of the estimate. For
curve fitting, it uses adaptive line segments to fit the curve,
extracts candidate points around the straight line and uses
the least squares method to fit the candidate points to obtain
the curve parameters. It reduces computational complexity,
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Fig. 29. 3DLaneNet [15] end-to-end approach. Left: Output shown in a
top-view perspective. Top-right: Result portrayed in 3D. Bottom-right: Result
projected onto the original input image.

enabling better detection of lanes on straight or curved lines
given noisy LiDAR data.

However, as the research proceeds, LiDAR alone is becom-
ing less and less of a way to detect lanes. Although it has the
advantages of high accuracy, all-weather work, 3D information
acquisition, and less susceptibility to occlusion, it also has the
disadvantages of higher cost, complex data processing, and
dependence on surface materials. Therefore, the current use
of LiDAR for lane detection typically works in conjunction
with a vision camera.

B. 3D Vision Detection

1) BEV-Based Monocular Vision Inspection: Inspired by
recent advancements in monocular 3D target detection meth-
ods, researchers have started exploring methods for performing
3D lane prediction directly from monocular images. As shown
in Fig. 29, 3D-LaneNet [15] proposes an anchor-based 3D
lane representation and projects 2D image features into the
Bird-Eye View (BEV) space via Inverse Perspective Mapping
(IPM) inside the network. Gen-LaneNet [16] introduces new
geometrically guided lane anchor representations in a virtual
top-down coordinate system to compute 3D lanes directly
from the network output. A scalable two-stage framework is
additionally utilized to decouple the learning of image segmen-
tation and 3D lane prediction, as shown in Fig. 30. Compared
to 3D-LaneNet, Gen-LaneNet significantly reduces the num-
ber of 3D lane labels required to achieve a robust solution
in real-world applications. Although this new geometrically
guided lane anchor of Gen-LaneNet is more generalizable for
unobserved scenarios, it is still limited to long lanes roughly
parallel to the direction of self-vehicle travel. 3D-LaneNet+
[101] is an extended 3D lane detection framework that builds
on the original 3D-LaneNet to support the detection of more
complex lane topologies such as short lanes, vertical lanes,
splits, and merges. Just as in Fig. 31, the framework employs

Fig. 30. Overview of Gen-LaneNet [16] method. The segmentation backbone
decodes an image into a lane segmentation map, and 3D-GeoNet predicts
3D lane points, specifically represented in top-view 2D coordinates and real
heights. At last, the geometric transformation converts the network output to
real-world 3D points.

Fig. 31. 3D-LaneNet+ method overview [101] method. The network is
comprised of image view and BEV. The last decimated BEV feature map
is fed into the lane prediction head, which subsequently produces local lane
segments and global embeddings for clustering the segments into entire lane
curves.

an unanchored semi-local representation for capturing geomet-
ric features of lane segments, while these are later globally
embedded into the complete lane curve to improve detection
performance in challenging situations. 3DLaneNAS [102] uti-
lizes Neural Architecture Search (NAS), using multi-objective
simulated annealing as the search method. The architecture of
the feature extraction and feature fusion modules was finally
optimized to improve the accuracy of monocular 3D lane
detection in both near and long-distance scenes. In addition,
a transfer learning mechanism is integrated to enhance the
pace of the search process and improve its accuracy.

In addition to this, Jin et al. [126] introduced the novel
attention module of Dual Attention (DA) to lane detection. The
attention mechanism employs dual-pathway correlated atten-
tion to generate additional features and aggregate information,
thus enabling the model to perform robustly and accurately
under complex conditions. Efrat et al. [127] proposed a semi-
local, BEV, and slice representation to decompose lanes into
simple lane segments. It combines learning from parametric
modeling of lane segments with deep feature embedding and
then clustering the segments into complete lanes. This com-
bination accommodates complex lane topologies, curvatures,
and pavement geometries.
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Fig. 32. PersFormer pipeline [17]. The goal is to learn a spatial feature
transformation from front view to BEV space to better represent BEV
features at target points by considering local context around reference points.
PersFormer consists of self-attention and cross-attention modules that interact
with BEV queries and reference feature to generate fine-grained BEV features.

Fig. 33. The architecture of STLane3D [106]. It can be simplified into three
main parts: encoder layer, fusion layer, and decoder layer.

2) Improved BEV Detection: However, all of the above
3D detection methods rely on IPM to map image features to
BEV features, and IPM causes distortion when encountering
uphill and downhill slopes. In response, CLGo [103] better
predicts camera pitch angle and mounting height by using
a two-stage frame. WS-3D-Lane [114] indirectly supervises
the 3D lane heights in the training data by assuming that
neighboring lanes have constant widths and equal heights.
Meanwhile, it proposes a camera pitch angle self-calibration
method to cope with the dynamic changes during data acquisi-
tion. PersFormer [17] uses a deformable attention mechanism
to iteratively update the BEV features, helping to mitigate
the differences introduced by IPM. At the same time using
known camera poses to build dense BEVs to look up the
query, thus unifying 2D and 3D lane detection under one
framework. Nevertheless, the PersFormer method has a high
computational resource requirement and a long convergence
time. As shown in Fig. 32. To overcome the problems of
PersFormer and maintain high performance, Li et al. [128]
proposed an approach that combines a perspective converter
with MobileNet. The consumption of computational resources
is reduced by the spatial feature extraction method provided by
MobileNet, while in Perspective Transformer, the spatial fea-
ture transformation module further refines high-quality BEV
features by generating multi-scale front-end view features.
As shown in Fig. 33, STLane3D [106] enables a multi-frame
fusion mechanism that harnesses the robust spatiotemporal
continuity of successive frames rather than concentrating on a
single shot. It first employs a pre-alignment process to align
the spatial cues between different frames and then introduces
an attention module to fuse the BEV features derived from var-
ious temporal stages. As a result, a more comprehensive and
continuous comprehension of lane attributes can be achieved.

Furthermore, recent years have seen the development of
novel and refined methods. DecoupleLane [92] is a cutting-
edge lane detection solution that integrates curve modeling
and ground height regression. It employs parametric curves

Fig. 34. Schematic of BEV-LaneDet [20] network structure. It consists of five
parts: Virtual Camera, Backbone, Spatial Transformation Pyramid, Key-Points
Representation, Front-view Head. In which S32 denotes 32x downsampling
of the input image.

to depict the lanes, preserving their original distribution char-
acteristics and employs ground height regression to address
ground height variations due to road conditions and other
factors. Moreover, DecoupleLane introduces a novel frame-
work and loss function that unifies 2D and 3D lane detection,
enabling the creation of optimized models with or without
3D labels. D-3DLD [112] utilizes voxel mapping with depth
awareness to extend rich contextual features from the image
domain to 3D space to determine 3D lanes based on vox-
elized features. Furthermore, an innovative lane representation
incorporating uncertainty has been developed, which allows
estimating the uncertainty intervals of 3D lane points by
applying Laplace loss. BEV-LaneDet [20] proposes a Spatial
Transformation Pyramid, a lightweight base on MLP for
transforming scale features from front-view to BEV, which
solves the problem of invalidating planar assumptions due
to factors such as slope. As shown in Fig. 34. Chen et al.
[113] propose an efficient transformer for 3D lane detection.
It introduces a decomposed cross-attention mechanism that
can simultaneously learn lane and BEV representations, which
solves the problems of inaccurate view transformation and
cumulative errors that may be caused by IPM in traditional
methods. GroupLane [108] uses a row classification strategy
to represent lanes, divides the feature mapping into groups, and
matches each group to a lane instance for detection. During
training, predictions are associated with lane labels, losses are
computed using one-to-one matching, and no post-processing
operations are required for inference. In this way, GroupLane
enables end-to-end detection, as shown in Fig. 35. Yao et al.
[129] used a sparse point-guided 3D lane detection that
consists of two stages: coarse-level lane detection and iterative
fine-level sparse point refinement. The coarse lanes are first
computed by establishing a dense but efficient correspondence
between the front view and the BEV space, and then the 3D
lanes are refined layer by layer from low to high resolution
by sparse point refinement to improve the efficiency of the
information flow and obtain more accurate results.

PETRv2 [107] is a multi-task learning approach that
includes 3D object detection, BEV segmentation, and 3D lane
detection. It introduces position embedding transformation to
temporal representation learning, which enables pose transfor-
mation for temporal alignment through 3D position embedding

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Washington Libraries. Downloaded on February 20,2025 at 06:57:48 UTC from IEEE Xplore.  Restrictions apply. 



18 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 35. The overall framework diagram of GroupLane [108]. In this detector,
feature maps are split into groups for prediction instance representation. The
predictions from detection heads are matched with lane labels using SOM
strategy for loss computation. GroupLane generates detection results without
post-processing during inference.

(3D PE). A feature-guided position encoder is further proposed
to re-weight 3D PE guided by 2D image features. Specifically,
the backbone network extracts 2D features from the multiview
images and later generates 3D coordinates. To achieve tempo-
ral alignment, the 3D coordinates in the PETR of the previous
frame t-1 are first transformed by a pose transformation. The
2D image features and 3D coordinates of the two frames
are then joined together and injected into the feature-guided
position encoder to generate the key and value components
of the transformer decoder. The detection, segmentation, and
lane queries initialized in different spaces interact with the key
and value components in the transformer decoder. The updated
queries are further used to predict 3D bounding boxes, BEV
segmentation maps, and 3D lanes with task-specific heads.

3) Innovative Detection: The reliance on the flat ground
assumption within IPM, combined with the loss of contextual
information in the BEV representation, significantly limits
its capacity to accurately reconstruct 3D information from
the BEV representation. Consequently, a growing number of
researchers are currently exploring innovative research break-
throughs that may address these limitations. GT [105] solves
the monocular 3D lane detection problem by exploiting the
geometric structure under the 2D to 3D lane reconstruction
process. It extracts BEV lane information directly from the
forward-looking image, which significantly alleviates the con-
fusion of far lane features in previous methods. SALAD [104]
can combine the semantic segmentation of 2D lanes and the
spatial depth estimation information for 3D reconstruction,
to directly obtain the 3D lane positions in the real scene.
As shown in Fig. 36.

Huang et al. [111] proposed a BEV-free method called
Anchor3DLane to predict 3D lanes directly from FV repre-
sentations. The 3D lane anchors are projected into the FV
elements to extract their features containing good structural
and contextual information to make accurate predictions.
CurveFormer [109] computes 3D lane parameters directly,
avoiding the explicit view conversion step between BEV and
front view. It treats the 3D lane detection problem as a curve
propagation problem and uses curve queries to represent the
3D lanes. The curve query is expressed by a dynamically
ordered set of anchor points and iteratively refined in the
Transformer decoder to improve the 3D lane detection results.

Fig. 36. Schematic diagram of the overall structure of SALAD [104]. The
backbone converts an input image into deep features, and two branches decode
them to obtain lane spatial info and segmentation mask. 3D reconstruction is
then performed, integrating this info to get the 3D lane positions.

Fig. 37. LATR [110] method overall architecture. LATR is a 3D lane
detection framework using a Transformer-based approach. First, the fron-
t-view image is processed by the backbone network, as shown in part (a).
Then, a Lane-aware Query Generator generates queries using lane-level and
point-level embeddings, as illustrated in (b). Dynamic 3D ground positional
embeddings are obtained through iterative refinement of a 3D ground plane
to capture 3D information.

CurveFormer++ [116] builds on CurveFormerby employing
contextual sampling and anchor point constraints to compute
curve query-related image features to handle different lane
lengths. In addition, it employs a temporal fusion module
that combines selected information sparse curve queries and
their corresponding anchor point sets to utilize historical lane
information. As illustrated in Fig. 37, LATR [110] detects
3D lanes by cross-attention of queries and key-value pairs,
using the lane-aware query generator and dynamic 3D ground
position embedding constructs.

C. Multi-Modal 3D Lane Detection

In complex traffic environments, monocular 3D detec-
tion may be interfered with by light variations, occlusions,
and reflections, resulting in inaccurate detection results.
Multimodal 3D lane detection can utilize complementary
information from multiple sensors to improve the detection of
lanes in different environmental conditions, such as multiple
cameras, cameras + LiDAR. It can also fuse the data acquired
by sensors to provide more sensory information and reduce
false detections due to data noise or occlusion from a particular
sensor, thus improving the accuracy and robustness of the
detection. By combining data from different sensors, real-
world lane information can be more accurately reproduced,
including lane location, shape, and size.

Bai et al. [130] present a new deep neural network
that utilizes both LiDAR and camera sensors and produces
very accurate estimates of the complete network architec-
ture directly in 3D space. Specifically, the system takes
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Fig. 38. Overview of M2-3DLaneNet framework [117]. It’s implemented by
utilizing both an image and a LiDAR point cloud as inputs, where features
from the image are obtained via top-down BEV generation. Subsequently, two
BEV features are integrated through bottom-up BEV fusion, which results in
the creation of a fused BEV feature. This fused BEV feature is then utilized
for the prediction of 3D lanes.

Fig. 39. The overall framework of DV-3DLane [118]. Images and point
clouds undergo separate processing in respective backbone. Bidirectional
Feature Fusion (BFF) is introduced for fusion of multi-modal features across
views. IAM is employed to form lane-aware queries Qpv and Qbev , which
are then aggregated into C through Dual-view Query Clustering augmented
with Epoints to form Q. 3D Dual-view Deformable Attention is introduced
to consistently aggregate point features in Q.

input information extracted from LiDAR scans and predicts
a dense ground height. Then, it combines the input RGB
camera images, which are projected onto the dense ground
surface and combined with the LiDAR information to pro-
duce lane detection in the top view 3D view. As shown
in Fig. 38, M2-3DLaneNet [117] enhances two-dimensional
features into three-dimensional space by fusing geometric
information derived from LiDAR data. Consequently, the
LiDAR features are further enhanced using a boosted two-
dimensional feature set through cross-modal BEV fusion.
DV-3DLane [118] achieves accurate 3D lane detection by fus-
ing image and LiDAR data in both PV and BEV views, using
innovative feature fusion and query generation methods, and a
3D dual-view deformable attention mechanism. As illustrated
in Fig. 39.

With the increasing popularity of autonomous driving, the
challenges associated with lane detection have also grown.
In the complex road environment, there is an escalating
demand for improved lane detection capabilities, and relying
solely on traditional sensors or a single perception technology
can no longer fulfill these needs. Instead, multimodal fusion
sensing is a promising approach that has the potential to meet
the ever-evolving requirements. In certain weather conditions,
such as when a vehicle is facing glare, driver vision may be
disrupted, potentially compromising vehicle safety. To counter
the issue, some drivers choose to wear sunglasses to alle-
viate this effect. However, it should be noted that placing

sunglasses over the camera lens may obstruct some light,
which may negatively affect the camera’s image quality. For
these reasons and taking into account actual vehicle configura-
tions, multimodal lane detection can fuse data from a variety
of sensors, such as cameras, LiDAR, and millimeter wave
radar, to achieve more accurate lane detection. Furthermore,
the recent advent of high-precision maps has introduced an
element of predefined information, such as road structure and
lane markings. When coupled with real-time sensor data, this
aids vehicles in more precisely identifying and comprehending
their immediate surroundings. Furthermore, the application of
such techniques as map matching and lane template matching
enhances vehicles’ capacity to detect lane boundaries, resulting
in enhanced reliability and accuracy.

V. EXPERIMENT

A. Datasets

In order to expedite the investigation and assessment of lane
detection techniques, researchers have assembled and devel-
oped several lane detection datasets. These datasets simulated
a variety of scenarios in the real world, including different
weather conditions, periods, and road types, to provide rich
training and testing samples. The section provides an overview
of these datasets, analyzing their characteristics, challenges,
and impacts to inform subsequent research.

1) Tusimple Dataset: Tusimple dataset [131] is the only
large-scale dataset used to test deep learning methods on
the lane detection task before 2018, and many of the lane
detection methods are based on it. The basic information of
the TuSimple dataset is shown in Tab. V and Tab. VII. Fig. 40
provides six examples of the TuSimple dataset, captured from
highway environments under varying weather and congestion
conditions.

2) CULane Dataset: The CULane dataset [36] was gath-
ered from cameras mounted on six separate cars, with the
road location being Beijing, China. The basic information of
the CULane dataset is demonstrated in Tab. V and Tab. VII.
The dataset has significant data volume, a wide variety of
road scene types, high coverage, and challenging detection
difficulty. It has a normal category and eight challenging
categories, including congestion, darkness, wireless, and other
difficult-to-detect situations, as shown in Fig. 41 (a). Moreover,
in its upper left corner, it exhibits the proportion of images
corresponding to each scenario type about the overall number
of CULane test sets. After the emergence of the dataset, most
of the lane detection methods have used it as a target to show
their method performance.

3) CurveLanes Dataset: The CurveLanes dataset [68] col-
lects real urban and highway scenarios from several cities
in China. Compared with the natural distribution of lanes,
CurveLanes has more curves, which account for more than
90% of the dataset. It also has more lanes than CULane and
TuSimple, like more than five lanes, so it’s more challeng-
ing. The CurveLanes dataset provides the essential details in
Tab. V and Tab. VII. Some examples of the dataset are shown
in Fig. 42.

4) Apollo 3D Synthetic Dataset: Apollo 3D Synthetic
dataset [16] is a highly diverse 3D world dataset built through
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TABLE V
BASIC INFORMATION OF 2D LANE DATASET

TABLE VI
BASIC INFORMATION OF 3D LANE DATASET

the Unity game engine. It simulates a variety of visual
elements, including highways, cities, homes, and other envi-
ronments, and renders images with diverse scene structures
and visual appearances. The basic information of the Apollo
3D Synthetic dataset is shown in Tab. VI with Tab. VII.
In Fig. 43, we show a few examples of the ApolloSim dataset.

5) OpenLane Dataset: OpenLane dataset [17] comes from
the public perceptual dataset Waymo Open Dataset’s valuable
content with lane and the closest-in-path object (CIPO) anno-
tations for 1000 road segments. In more detail, OpenLane
contains 200,000 frames, over 880,000 instance-level lanes,
14 lane classes, as well as scene labels and closed-path object
annotations. The basic information of the dataset is shown
in Tab. VI with Tab. VII. Researchers built Openlane-v2 by
adding topology based on it, providing 3D annotations of the
lanes. In Fig. 44, we show several scenarios for the Openlane
dataset.

6) ONCE-3DLanes Dataset: The ONCE-3DLanes
dataset [104] is a collection of real-world autonomous
driving data in which lane layout annotations are available.
Tab. VI and Tab. VII summarize the essential details of the
ONCE-3DLanes dataset. The data was sourced from various
geographical locations within China, including highways,
bridges, tunnels, suburbs, and city centers. It encompasses a
broad spectrum of weather conditions and lighting conditions.
Furthermore, this dataset includes ample slope scenarios
with varying lighting conditions and multiple lanes. Several
examples of the dataset are illustrated in Fig. 45.

7) Other Dataset: In addition to the dataset introduction
above, a multitude of additional datasets have been
released by researchers, including Caltech Lanes [132],
VPGNet [50], VIL-100 [133], BDD100K [134],
LLAMS [135], SDLane [62], ApolloScape dataset [136],
OpenDenseLane [137], and others. Examples of them are
shown in Fig. 46. In Tab.VII, we draw a comparison between
several of the existing and extensively utilized datasets.

B. Evaluation Metrics

There are two mainstream evaluation methods in lane detec-
tion, which are area-based and distance-based, as shown in
Fig. 47.

1) Area-Based Evaluation: As displayed in Fig. 47, the
sampled points are extrapolated with a suitable curve to stretch
the lanes to a consistent width in the original resolution of the
image. A true example is recognized when IoU between the

predicted value and the true value exceeds a predetermined
threshold. When evaluating the performance, the True Positive
(TP), False Positive (FP), and False Negative (FN) cases of
lane detection in the test set are respectively counted. The
Precision, Recall, and F1 values are calculated as the final
evaluation metrics, as shown in Eq. 1.

F1 = 2 ×
Precision × Recall
Precision + Recall

, (1)

where Precision =
T P

T P+F P and Recall =
T P

T P+F N .
This approach is more concerned with the overall similarity

of lane detection, globally requiring that the connectivity of
all predicted points be as similar as possible to the true value,
with no specific requirements for deviations from individual
sampling points. In this paper, the CULane dataset [36] was
used for this evaluation methodology, where the lane width of
the extension is set to 30 pixels and the threshold of IoU is
set to 0.5.

2) Distance-Based Evaluation: The distance-based evalu-
ation is determined by the difference in distance between
each pair of sampled points and the true value point, and
the difference is less than a certain threshold is determined
to be the correctly predicted point, such as the points with
spacing d2 d4 in Fig. 47. The ratio of the number of correctly
predicted points on average per image to the total number
of points is defined as the accuracy(Acc) of lane detection.
If the percentage of true points in a lane is more than a
certain threshold then that lane is considered a TP, else it is
an FP or FN. The final metrics used to evaluate the detection
performance are Acc, FP, and FN, which are calculated as
shown in Eq. 2. 

Accuracy =

∑
clipCclip∑
clipSclip

,

FP =
Fpred

Npred
,

FN =
Mpred

Ngt
,

(2)

where Cclip represents the number of accurately predicted lane
points and Sclip denotes the total number of lane points of a
clip. Fpred denotes the number of incorrectly predicted lanes,
Npred denotes the number of all predicted lanes, Mpred denotes
the number of missed true lanes, and Ngt is the number of all
true lanes.

The distance-based evaluation approach puts more emphasis
on the accuracy of the sampled points, and only points
that fall within a smaller interval around the true value are
considered to be correct, i.e., the localization has to be more
accurate, reflecting the local accuracy of lane detection. In this
paper, we adopt this evaluation approach on the Tusimple
dataset [131] and follow the official evaluation metrics. If the
distance of a lane point is less than a given threshold tpc =

20
cos(ayl) , the lane point is considered to be correct, where ayl
denotes the angle of the corresponding ground truth value.
Specifically, the distance difference threshold between the
predicted correct point and the true point is set to 20 pixels,
and the percentage of predicted correct points on the true
example of the lane needs to be greater than 85%.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Washington Libraries. Downloaded on February 20,2025 at 06:57:48 UTC from IEEE Xplore.  Restrictions apply. 



BI et al.: LANE DETECTION FOR AUTONOMOUS DRIVING 21

TA
B

L
E

V
II

B
A

S
IC

IN
F

O
R

M
A

T
IO

N
O

F
L

A
N

E
D

E
T

E
C

T
IO

N
D

A
TA

S
E

T

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Washington Libraries. Downloaded on February 20,2025 at 06:57:48 UTC from IEEE Xplore.  Restrictions apply. 



22 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 40. Visualization results of different methods on the Tusimple dataset. (a) Example of Tusimple dataset [130] with straight and curved lines in different
weather and scenarios. (b) Lanenet [35], (c) RESA [37], (d) UFLD [66], (e) UFLDv2 [71], (f) PINet [80], (g) BézierLaneNet [90].

Fig. 41. Visualization results of different methods on the CULane dataset [36]. (a) CULane dataset examples for different scenarios and proportion of each
scenario. (b) SCNN [36], (c) RESA [37], (d) UFLD [66], (e) UFLDv2 [71], (f) LSTR [89], (g) BézierLaneNet [90], (h) SRLane [76].

3) 3D Inspection Performance Evaluation: For 3D detec-
tion tasks, we adopt the evaluation metrics proposed by
Gen-LaneNet [16]. It includes detection accuracy and geo-
metric estimation accuracy. First, detection accuracy was first
calculated from standardized average precision (AP) mea-
surements of the precision-recall curve. Following this, the
curvilinear distance between the real and detected lanes was
calculated as a weighted sum of the Euclidean point-to-
point distances. This distance was calculated at predefined
y-values placed every 80 cm, extending from 0-80 meters. Per-
forms one-to-one curve matching, selecting pairs of decreasing

similarity. If the weighted distance is below some fairly loose
threshold (1.5 meters), the match is considered correct. Subse-
quently, the precision-recall curve is generated by iterating the
lane confidence threshold. For the matched detection results,
the geometric estimation accuracy was assessed by measuring
the error at the same points. As shown in Eq. 3.

d i
p−t =


√(

x i
pv

i
p − x i

t v
i
t

)2
+

(
zi

pv
i
p − zi

tv
i
t

)2
, if vi

p = vi
t ,

1.5, otherwise,

(3)
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Fig. 42. Example of the CurveLanes dataset [68], which contains complex
curved lanes.

where (x i
p, zi

p) denotes the 3D position points on a lane
derived by model inference, (x i

t , zi
t ) represents the corre-

sponding point on the label lane, vi
p and vi

t represents the
corresponding point on the label lane.

For correctly detected lanes, the position error is also
evaluated, and the evaluation terms include Xerror (near),
Xerror (far), Zerror (near), and Zerror (far). An example of
correctly detected lanes and corresponding labels is analyzed,
and the error solution formula is shown in Eq. 4.

Xerror =
1
N

N∑
i=1

√(
xi − x̂i

)2
,

Zerror =
1
N

N∑
i=1

√(
zi − ẑi

)2
.

(4)

We investigate F-Score, and error (near and far) of the
existing methods on Apollo 3D Lane Synthetic dataset [16],
and OpenLane dataset [17] in V-C.

In addition, for ONCE3DLanes dataset [104], SALAD
proposes the metric to compute the matching of two lanes
in the z-x plane (top view). In this, the lane is represented as
Lk

=
{
(xk

i , yk
i , zk

i )
}n

i=1. To determine whether the predicted
lane Lp matches the ground-truth lane Lg, the first matching
is first performed in the z-x plane, namely top-view, using
the traditional IoU method to determine whether L p matches
Lg . If the IoU is bigger than the IoU threshold, the unilateral
chamfer distance (CD) is further used to compute the curve
matching error in the camera coordinates. The curve matching
error C Dp,g between L p and Lg is calculated as shown in Eq.
5. 

C Dp,g =
1
m

m∑
i=1

∥∥∥Pgi − P̂p j

∥∥∥
2
,

P̂p j = min
Pp j ∈L p

∥∥Pp j − Pgi

∥∥
2 ,

(5)

where Pp j = (x p j , yp j , z p j ) and Pgi = (xgi , ygi , zgi ) are the
points of L p and Lg respectively, and P̂pj is the closest point
to a particular point Pgi . m represents the number of points
token at an equal distance from the ground-truth lane. If the
unilateral chamfer distance is less than the chamfer distance
threshold, it is written as τC D . It is generally accepted that L p

matches Lg and L p is accepted as a true positive.

C. Results

We selected three 2D datasets, Tusimple [131], CULane
[36], and CurveLanes [68], and three 3D datasets,
Apollo 3D Lane Synthetic3D [16], OpenLane [17], and
ONCE3DLanes [104], for comparison, as they are widely
used in lane detection algorithms. In our opinion, nothing is
more intuitive than data, therefore we give a large number of
data references.

1) Results on Tusimple Dataset: The results of TuSim-
ple [131] are shown in Tab. VIII. We use F1 score, accuracy,
false positives, and false negatives to evaluate the model
performance. The gap between the different methods on this
dataset is smaller because the amount of data is smaller
and the scenarios are more homogenous. Fig. 40 shows the
visualisation of different methods on this dataset.

2) Results on CULane Dataset: The results of state-of-the-
art methods on CULane [36] are shown in Tab. IX It shows
the F1 score, as well as the evaluation results for 9 scenes.
We adopt the F1 score to measure the performance. Fig. 41
shows the visualisation of different methods on this dataset.

3) Results on CurveLanes Dataset: In addition to the above
two datasets, CurveLanes [68] is also widely used. We have
chosen F1, Precision, and Recall as the evaluation criteria
for CurveLanes. The results of CurveLanes [68] are shown
in Tab. IX.

4) Results on Apollo 3D Lane Synthetic Dataset: We
compare the test performance of multiple 3D lane detection
methods on the Apollo 3D Lane Synthetic dataset [16],
including F–Score, AP and X/Z error.As shown in Tab. XI.
In addition, we provide Gen-LaneNet and Anchor3DLane
visualisation results on this dataset, as shown in Fig. 43.

5) Results on OpenLane Dataset: We provide 3D evaluation
results of multiple lane detection algorithms on the OpenLane
dataset [17]. In order to thoroughly evaluate the models,
we report the F-Score for the entire validation set and for
different sets of scenarios, as shown in Tab. XII and XIII,
respectively. The visualisation results are shown in Fig. 44.

6) Results on ONCE3DLanes Dataset: In the evaluation
of the ONCE-3DLane dataset [104], four metrics were thor-
oughly analyzed and ensure the accuracy of the model scores.
These metrics include the F-Score, Precision, Recall, and CD
error, which are all presented in Tab. XIV. The results of the
visualisation of this dataset are shown in Fig. 45.

VI. CURRENT CHALLENGES AND FUTURE PREDICTIONS

Despite impressive breakthroughs in lane detection tech-
nology, there still exists various setbacks, which not only
hinder its current progress but also wield a considerable impact
on its future potential. In this context, we need to delve
deeper into the adaptability of lane detection technologies in
different environments and find innovative solutions to meet
these challenges.

A. Current Challenges

In the real world, the lane detection system is operating at all
times, regardless of the environment or weather. The essence
of lane detection is to detect information about the position
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Fig. 43. (a) Several examples from the ApolloSim dataset. The figure shows six different scenarios for daytime and nighttime in sequence, includes both
straight and curved lines. (b) Gen-LaneNet [16] visualisation results on the ApolloSim dataset. (c) Visualisation results of Anchor3DLane [111] on the
ApolloSim dataset, where red represents the inferred results and blue indicates the dataset annotation.

of the lane relative to the vehicle. With this aim in mind,
all strategies and improvements are designed to minimize
recognition errors. From the data flow point of view, which
means data input, data analysis, and data output, lane detection
technology has the following issues.

1) Perceived Uncertainty: The sensors used in the vehicle
may have errors that result in a certain degree of bias of
the detected lane position, such as LiDAR accuracy, lens
aberrations, and so on. Vehicle motion states (acceleration,
deceleration, reorientation) can affect the position and shape
of the captured lane lines, thus increasing the detection
uncertainty. Therefore, the confidence with which deep learn-
ing makes predictions about the input data becomes very
important. Unfortunately, the prevailing approach still tends to
predict scores, and confidence is just now attracting attention.
To reduce the error effects of input data, the method of model
uncertainty estimation can be introduced to model and quantify
the uncertainty in the detection results [138].

2) Generalization Ability: The dataset may not fully cover
complex road conditions and environmental changes, such as
different regions, weather conditions, and lighting, resulting in
the model potentially performing poorly in new environments.

There are dynamic scene changes during vehicle travel, such
as occlusion by other vehicles, pedestrians, or trees, missing or
changing lane lines, and unstructured roads with cracked and
potholed pavements. However, the lane detection model fails to
adequately consider these scenarios, which may result in low
generalization ability. Deep learning models may overfit the
training data during the training process, learning about the
noise in the dataset and the subtle variations in a particular
situation, while ignoring broader patterns and regularities.
Additionally, there may be no learned feature representations
that are generalizable for the lane detection task. To address
the challenges in data processing, researchers can either collect
more diverse and real-world data or use data augmentation
techniques to simulate different weather conditions, lighting
situations, and dynamic scenarios to cover a wide range of
road conditions and environmental variations to enhance the
robustness of the model. Regularization techniques [139] such
as Dropout [140] and L1/L2 [141], [142] regularization can be
used to prevent the model from overfitting the training data.
In addition, more complex and flexible model architectures
can be designed to improve the capture of lane line geometry
and features.
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Fig. 44. Anchor3DLane [111] results on the Openlane dataset, with the red line indicating the predicted lane lines and the other color line indicating the
ground truth lane lines labeled on the dataset. Figures a and b depict straight-line scenes during the day and night, respectively. Figures c and d display curved
scenes during these times. Figures e and f showcase residential neighborhoods during the day and night. Figures g and h show rural paths during the day and
night. Figures i and j depict exposure scenes during the day and night. Figures k and l showcase foggy scenes during the day and night.

We think lane detection in AI is in a DIKW model, i.e., data,
information, knowledge, and wisdom are incorporated into a
kind of pyramid-shaped hierarchy, with each layer endowed
with some qualities over the next. Raw observations and
measurements yield data and analyzing relationships between
data yields information. The application of information in
action produces knowledge. Wisdom is concerned with the
future; it implies implication and lagging influence. Lane
detection performance based on a certain dataset is effective,
achieving better results on the same dataset. However, it’s
critical to highlight that the trained model’s results on other
datasets, testing its generalization ability, are substandard.
We aim to establish a comprehensive, universally applicable

model, suitable for all situations, but current scientific and
technological progress in this area is challenging to translate
into practical applications.

3) Adaptation of Lane Detection: In addition to lane detec-
tion, there are other detection tasks in automated driving, such
as vehicle detection, pedestrian detection, and traffic marking
detection, so lane detection must leave actionable space for
other tasks. Recent multitask learning [47] proposes a solution
idea to merge various detection tasks but multitask learning
still has a lot of development space. To effectively detect lane
lanes while leveraging features relevant to other tasks, it is
paramount to design suitable feature extractors that enable effi-
cient feature sharing and isolation. There may be competition
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Fig. 45. Scenes under different weather conditions in the ONCE-3DLanees dataset, including (a) city roads, (b) residential areas, (c) under the viaduct,
(d) multiple lanes, (e) foggy day, and (f) cloudy day scenes. The figure shows the lane representations and their 3D position coordinates in the original image
after the Anchor3DLane [111] test.

Fig. 46. Example of partial lane dataset.

and cooperation between different tasks. For example, lane
detection tasks may compete with vehicle detection tasks,
thus computational resource allocation is an emerging issue.
On the other hand, they may also improve each other’s
performance by sharing features, which requires a reasonable
trade-off when designing the network architecture. In addition,
there may be an imbalance in the distribution of data across
different tasks, which can cause the model to have an excessive
performance advantage for some tasks and poor performance
for others during training. Therefore, appropriate strategies
such as weighted loss functions or resampling techniques are
needed to improve the model’s performance.

4) Complexity of Data Processing and Analysis: In this
era where data is king, lane detection systems require
large amounts of data to train and optimize algorithms to
ensure accuracy and stability in different environments and

Fig. 47. Schematic representation of area-based and distance-based assess-
ment approaches.

conditions. Therefore, extensive preprocessing and labeling are
required to ensure the quality and consistency of the data.
Secondly, the lane detection algorithm should have strong
data analysis capabilities. It should be able to extract effective
features from large amounts of data and can recognize and
judge them accurately. As introduced in 6.1.3. In addition, lane
detection needs to take into account the real-time requirements.
It can identify and track lanes in a timely and accurate manner
even at high speeds or in complex traffic situations. As a
result, there is also a higher demand for efficiency and speed
in data processing and analysis. On the one hand, relying on
existing theories, parallel computing, GPU acceleration, and
other techniques are used to speed up processing and improve
system performance. Another possible approach is to develop
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TABLE VIII
PERFORMANCE OF DIFFERENT METHODS ON TUSIMPLE

new computational acceleration algorithms, as well as to push
for a new generation of more powerful processors.

5) Social Issues. a) Resource Sharing: In the automotive
industry, various vehicle companies have accumulated a huge
amount of data resources. However, they are cautious about
sharing data publicly. Vehicle companies have invested a lot of
resources in data collection, processing, and analysis, which
may contain their core technologies and trade secrets. The
vehicle industry is highly competitive, with companies vying
for market share and technological advantage. Public data
sharing may give competitors access to favorable information,
intensifying competition in the marketplace and reducing the

firm’s competitive advantage. In addition, data protection
regulations such as the General Data Protection Regulation
(GDPR) have strict requirements on the process and protection
of personal data. Vehicle companies need to ensure the legality,
security, and privacy protection of their data so as not to violate
laws and regulations and bear legal liabilities and business
risks.

6) b) Formulation of Laws, Regulations and Standards:
With the development of autonomous driving technology,
relevant laws, regulations, and standards need to be established
to regulate lane detection system design, use, and testing.
This involves issues such as road traffic regulations, safety
standards, and allocation of responsibilities.

7) c) Road Infrastructure Adaptation: Autonomous vehicles
need to rely on road marks for localization and navigation.
Therefore road infrastructure must be suitable to ensure that it
can meet the needs of autonomous driving systems. It involves
work such as updating road markings and installing road
sensors.

8) d) Human-Computer Inflation (HCI) and Human Inter-
vention (HI): In the automatic driving process, HI may
be required for intervention or decision-making, such as in
complex traffic situations and emergency situations. Therefore,
appropriate HCI interfaces and decision-making mechanisms
are necessary for ensuring effective communication between
humans and the autonomous driving system.

9) e) Technology Popularization and Acceptance: The
popularization of autonomous driving technology needs to
face public acceptance and recognition, including aspects
such as trust in the technology, safety concerns, and cost
considerations.

B. Predictions of Future Directions

1) 2D + 3D Lane Detection: The 2D lane detection results
provide important support for the acquisition of 3D coordi-
nates. By extracting features from 2D images, we can obtain
information about the position and shape of the lanes in the
2D plane. This information lays the foundation for subsequent
3D detection. After acquiring the 2D lane data, this 2D
information can be mapped to the 3D space by combining the
internal and external parameters of the camera. For example,
using known camera parameters and image depth information,
the system can convert 2D coordinates to 3D coordinates,
thereby accurately determining the position of an object in
3D space. This mapping not only helps to enhance scene
understanding but also supports path planning and decision-
making.

2) Multi-sensor Fusion: As of now, the mainstream sen-
sors equipped in autonomous vehicles are cameras, LiDAR,
millimeter wave mines, inertial measurement units (IMUs),
and GPS. These sensors play an essential role in L2 as well
as L3. As the technology iterates, new sensors will gradually
make their way onto the scene, just like event cameras [143],
depth cameras, multi-threaded 3D LiDAR, and other sensors
with higher accuracy. Combining data from different sensors
can compensate for the limitations of a single sensor, thus
improving the accuracy, reliability, and applicability of lane
detection.
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TABLE IX
PERFORMANCE OF DIFFERENT METHODS ON CULANE
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TABLE X
PERFORMANCE OF DIFFERENT METHODS ON CURVELANES

For example, the camera may not be able to sense when
there is strong light or light interference, as shown in
Fig. 48 (a). At this time, the high-precision LiDAR will detect
the road coating, road asphalt, and other factors via the
reflected echoes, so as to detect the lanes. In addition, the
shape and position of lane lines in an image may change,
making lane line detection difficult. Camera vibrations and
changes in viewing angle can also affect accuracy and stability.
A multi-sensor fusion approach can effectively address these
difficulties. Combining camera, LiDAR, and other sensor data
improves the accuracy and stability of lane line position.
In this way, the fusion design of these sensors will enable
their deployment for advanced levels of autonomous driving
(L4 and L5), and they are likely to serve as the data source
for future lane detection systems. But when fusing data from
different sensors, new challenges arise, one of which is the
need to design applicable data fusion algorithms. It is a topic
worthy of our research.

3) Responding to Weather Changes: Current lane detection
performance has progressed significantly in well-lit, clear
lane marking conditions. However, there is still room for
improvement in accuracy in harsh environments, especially in
low-light conditions, such as cloudy days and nights, as shown
in Tab. IX XIII. On cloudy days or at night, lack of light
makes lane marks unclear, making it difficult for the algorithm
to recognize and track lanes [46]. In addition, background
clutter information (reflections from street and vehicle lights)
may interfere with detection and analysis. We can use special
sensors, such as low-light enhanced cameras, infrared cameras,
or LiDAR, to obtain additional information and improve sys-
tem robustness and stability through optimization algorithms
and augmented learning.

In addition, most of the current research on severe weather
focuses on cloudy days, glare, rain, and fog [17], but there is
a lack of research on snow and dust, just like in Fig. 48.
In winter, autonomous driving encounters situations rarely

Fig. 48. Interference with lane detection in different environments. (a) Light
projected onto the roadway. (b) Snow on the road surface. (c) Dust on the
road. (d) Various lights at night.

found in lane datasets, such as snowy landscapes. In the lane
dataset, snowy scenarios are relatively rare, but in winter,
snow poses a significant obstacle that must be factored in
when developing autonomous driving technology. Ice on the
road and snow on the road has a significant impact on the
decision control of the automated driving system. Sandy and
dusty weather also have a major interference in the detection
interference of various sensors. Therefore, how lane detection
can cope with these weather conditions will become a future
research direction. Combining the existing theories [144],
[145], [146], [147], we believe that image snow removal and
image denoising can be used in snowy and other unfavorable
weather lane detection to enable the preprocessing of camera
data acquisition.

4) Large Language Model (LLM): The launch of Chat
Generative Pre-trained Transformer (ChatGPT) [148] shows
the fascination of large language models in the field of
artificial intelligence (AI). Transformer [58] is one of the core
architectures for large-scale language modeling, and after Pers-
former [17] introduced the Transformer into lane detection,
lane detection performance was greatly improved. And as a
result, we have a new idea. Going to develop a dedicated LLM
that focuses on lane detection tasks. Inputting data captured
by vehicle sensors and cameras into LLM utilizes its powerful
language understanding and contextual inference capabilities
to interpret lane markings and road conditions. LLM can ana-
lyze various visual features in an image and generate detailed
descriptions of lane position, type, and state based on context,
thereby providing more accurate and richer information to
the vehicle’s automated driving system. In addition, LLM can
combine information such as vehicle sensors and GPS data to
provide a deeper understanding and inference of the vehicle’s
surroundings. Combining language models with traditional
computer vision techniques can improve the ability of lane
detection systems to understand complex traffic scenes.

We think that a grand language model in autonomous
driving can accept image sequences as input and output scene
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TABLE XI
PERFORMANCE OF DIFFERENT METHODS ON APOLLO 3D LANE SYNTHETIC

TABLE XII
PERFORMANCE OF DIFFERENT METHODS ON OPENLANE

description results. The extensive prior knowledge from pre-
training a large visual language model (VLM) can be utilized

to improve perception and comprehension performance [149].
In this, vision-to-text (V2T) is key. We can integrate visual
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TABLE XIII
PERFORMANCE OF DIFFERENT METHODS ON OPENLANE

TABLE XIV
PERFORMANCE OF DIFFERENT METHODS ON ONCE3DLANES

embeddings and linguistic embeddings using various fusion
methods to jointly optimize the feature representation used for
the target task [150]. Alternatively, by comparative learning on
large numbers of image-text pairs, image features relevant to
language are captured [151]. Specifically, for lane detection,
the image captured by the camera with the associated lane
markings is used as the learning object. Enhance the lane
perception in various traffic environments through extensive
prior knowledge of VLM. Then, search for the association
between traffic scene images and lane markings to capture
representations related to “lane language”.

5) Powerful Computing Ability: Advanced deep learning
algorithms and complex data fusion techniques require execu-
tion in real-time environments to achieve accurate perception
and understanding of the environment. Therefore, lane detec-
tion systems require sufficient computational resources to
support the real-time execution of these algorithms. In addi-
tion, lane detection systems usually require cooperation with
high-precision maps to achieve more accurate lane sensing
and localization. Constructing and updating high-precision
maps involves extensive data processing and computation
work, which also requires the support of powerful computing
resources. The computational speed improvement has two
directions. On the one hand, computational strategies can be
optimized, which requires good models and algorithms to
reduce the algorithmic complexity, including space complexity
and time complexity. On the other hand, developing more

powerful computing processors and accelerating hardware
updates and iterations that lead to powerful hardware comput-
ing capabilities. It requires a concerted effort by companies,
research institutes, and other researchers. One point we need
to make clear is that these algorithms are serving autonomous
driving. Unless all the data are sent to the cloud via 4G/5G
or even newer communication technology, it will only work
in the vehicle [152]. While the vehicle resources are limited,
its primary task is traveling, not computing. Therefore, how
to run these algorithms on an on-board computer [153], [154]
has become a worthy direction to explore.

6) Optimization of Training Process: The training data
needs to be accurate and diverse. Filtering is required before
training to minimize noise [138], [155]. Therefore, we can
learn from parameter adjustment in control theory. The training
hyperparameters can also be adaptively adjusted so as to
reach the target state as soon as possible. More specifically,
the model training situation is monitored in time during the
training process, including the change of the loss function, the
improvement of the model performance, and so on. And timely
adjust the training strategy and hyperparameters to accelerate
the model convergence and improve the training efficiency.

7) Uncertainty Perception: In order to solve the problem of
6.2.1, the output of the lane detection model can be changed
from deterministic to probabilistic, which means that the prob-
ability distribution of each pixel or lane is outputted instead
of a simple binary classification result. It can better reflect
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the model’s uncertainty about detection results. Develop new
methods for estimating uncertainty in lane detection models
to simulate and estimate uncertainty in detection results.

In addition, when the vehicle faces unknown, randomly
occurring scenarios or complex lane structures, ADS needs
to have more decision-making capabilities to ensure that it is
able to make informed control maneuvers. In this case, the lane
detection model not only accurately recognizes lanes but also
understands and responds to complex traffic environments.
So active learning [156] and incremental learning [157] for
roads is very important. In road scenarios, active learning can
select informative or challenging scenarios to help the model
better adapt to different road conditions and changes. For
example, the system can collect data on rainy days, at night,
or in congested traffic situations to improve the model’s ability
to understand and generalize to these complex scenarios.
Incremental learning updates the model by introducing new
data after the model has already been trained, rather than
retraining the entire model. It can be used to quickly adapt
to new road signs, lane line configurations, or changes in
traffic rules. To build a human-machine interaction system that
incorporates feedback and decision-making from the human
driver before fully automated driving is achieved. Enable
the autonomous driving system to adjust the output of the
lane detection model according to the driver’s intention and
feedback.

8) New Technological Breakthroughs: After John
McCarthy, the father of Artificial Intelligence, introduced
Artificial Intelligence at the Dartmouth Conference in 1956,
AI gradually evolved. But later, as it is difficult to improve
the efficiency of the attribution method, it enters into a
dilemma. Expert systems and neural networks, including
RNN [158], CNN [34], and GNN [159], later emerged, but
overall it was not a hot state of affairs. Until the introduction
of AlexNet [160] in 2012 ushered in a historic breakthrough
in AI algorithms and kicked off the AI boom. OpenAI
releases ChatGPT [148] in 2022, once again producing a
breakthrough in the development of artificial intelligence.
Hough [161], CNN [34], and Transformer [17] have been
successively applied to lane detection. In this decade CNN
has driven lane detection forward rapidly, and in the future
Transformer and other new theories will drive it forward as
well.

Lane detection has also evolved without a mathematical
foundation. Early lane detection is realized by parabola,
likelihood function [161], and so on. Later, as the amount
of data increases and the complexity increases, people also
through mathematical principles to reduce the computational
complexity [162]. For example, FDA [163] uses a combination
of Fourier series to estimate the gradient of a symbolic
function in the frequency domain to train a BNN, Wave-
MLP [164] introduces complex numbers into neural networks
by treating each token as a wave with an amplitude and
phase, and mamba [165] will apply state space to deep
learning. In addition, the limitation of the development of
artificial intelligence is the computational power. From the
CPU and GPU update to look at the development of artificial
intelligence, it can be seen that when the computational power

is improved, AI becomes more “intelligent”. Improving the
arithmetic power of lane detection computational devices is
equally effective in increasing detection results. And the above
described are not single but integrated and mutually reinforc-
ing. We can safely anticipate that any significant breakthroughs
in the creation of new AI models, applications of mathematical
theories, or the introduction of novel computational tools will
significantly impact the field as a whole. We believe that in
this era of rapid technological development, “new AlexNet”
and “new ChatGPT” will appear shortly. Of course, there are
many more breakthrough points, such as new materials, new
sensing devices, and new communication technologies.

9) Actual Utilization: With the development of autonomous
driving technology, lane detection systems need to be more
automated and intelligent. In practical use, the first condition
is stable, accurate, and fast. In detail, it means that it is running
stably, with a high level of accuracy and fast operational com-
puting power. Future lane detection systems may be integrated
with other sensors and modules to enable more advanced
driver assistance functions such as automatic lane chang-
ing and automatic parking. There are many instances where
various sensors work together, running multiple tasks simul-
taneously. Like Xiaomi intelligent driving high with the chip
is Nvidia double Orin-X, combined arithmetic 508TOPS. The
low version uses Orin-N, single chip arithmetic 84TOPS [166].
Only a small portion of these computational resources are used
by lane detection. As a result, future lane detection systems
need to be lower cost and more efficient.

On real-world roads, there are various types of lane lines,
such as white solid dashed lines, double yellow lines, etc., and
these markings are crucial for vehicle movement. However,
most of the current lane detection only detects the location of
the lane lines and does not give a reasonable explanation of
the type of lane lines, which is precisely an indispensable part
of autonomous driving. Moreover, it’s vital to contemplate the
potential future applications of this data within control sys-
tems, the intended format for the data transmission structure,
and to assess scenarios such as dashed lines turning into solid
lines at intersections, or a predicted growth in the number of
lanes. All of these elements are topics for subsequent research.

Furthermore, UniAD [167] proposes an integrated frame-
work for establishing a complete perception-making process.
It integrates full-stack driving tasks into a single network,
enabling more efficient exchange of information and coordi-
nating perceptual prediction decisions to further enhance path
planning. It makes for a revolutionary moment in autonomous
driving: End-to-end Autonomous Driving! For example, the
Tesla FSD v12 directly reduced the amount of code from over
300,000 lines to 2,000 lines. This may mean that lane detection
will be moving in that direction.

10) Social Situation: Demand for lane detection technol-
ogy as a means of enhancing driving safety and comfort
is set to increase further in the future, attracting increased
attention and significant market interest. Many countries
and regions have established relevant traffic regulations and
standards that require vehicles to have certain driver assis-
tance systems, such as Lane Keeping Assist (LKA). Through
regulatory requirements, market demand, safety needs, and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Washington Libraries. Downloaded on February 20,2025 at 06:57:48 UTC from IEEE Xplore.  Restrictions apply. 



BI et al.: LANE DETECTION FOR AUTONOMOUS DRIVING 33

technological advances, lane detection will continue to move
forward, increasing its value and impact in the application of
autonomous driving.

VII. CONCLUSION

In this survey, we offer an in-depth exploration of lane
detection technologies employed in autonomous driving tech-
nology. Initially, we outline the progression of autonomous
driving technology, including the requisite lane detection task
and its associated challenges. Next, we provide an in-depth
study of lane detection algorithms (both 2D and 3D) from
the past decade, which focus mainly on visual detection.
Furthermore, we present a comprehensive review of lane
detection datasets, highlighting six prominent datasets from
which existing methods are evaluated, thereby providing read-
ers with insights into the optimal performance and potential
optimization strategies. Finally, we present the current chal-
lenges that lane detection technology faces today and forecast
possible future directions of advancement. In summary, lane
detection not only allows for precise positioning of cars within
a lane, but also provides an important basis for subsequent lane
departure warning and trajectory planning. We hope that this
review can benefit the community and serve as an insightful
guide for future lane detection research.
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